的方位角和结点I的坐标概略值,再用加权平均值作为它们的最或是值。这样,单结点导线就化为三条单 一的附合导线。
例2 图4-8所示的单结点导线中,从AB、CD、FE分别推算结边IJ的方位角,列入表4-3,计算结边IJ的方位角最或是值。 结边方位角最或是值的计算: ???Pa? ?P? 单位权中误差计算:设导线的条数为N ??? 最或是值中误差的计算:
ma???PVV?N?1
??P?
本例中,单位权中误差?=±2.0″,最或是值中误差ma=±2.3″
单结点导线结边方位角计算 表4-3
起始边 AB CD EF ∑ 结边方位角概值 14°21′18.3″ 14°21′13.8″ 14°21′10.0″ 角数n 5 4 4 权P?1n 方位角最或是值 V -4.6 PVV 4.232 0.003 3.423 7.658 0.20 0.25 0.25 0.70 14°21′13.7″ -0.1 3.7 ②双结点导线
双结点导线就是结点导线网中有两个结点(图4—9)。
双结点导线计算时,先选定一个结点,用等权替代法将该结点上的导线化为一条等权导线,这样,双结点导线就化为单结点导线,求得第二条结边方位角和第二个结点坐标的最或是值,再反过来求第一条结边方位角和第一个结点坐标的最或是值,最后将导线网化为若干条附合导线。
结边方位角的最或是值: ??Pa? ?P??设导线条数为N,结点数为t,则单位权中误差为:
???最或是值中误差为:
ma???PVV?N?t
??P?
计算结点坐标时,若导线边长由测距仪测得,则各条导线的权为边数的倒数;若导线边长由钢尺量取,
则各条导线的权为其边长之和的倒数。
结点坐标单位权中误差:
???X??? ??????Y??PVV?XN?t?PVV?YN?t
结点坐标最或是值中误差:
?X?m???X?P?? ?
?m???YY??P??结点坐标单位权中误差:
M??mX?mY
例3 如图4-9所示的双结点导线中,导线边长均用测距仪测得,导线AB、CD的边数均为4,其权
为P1=P2=0.25,先从AB、CD开始,计算结点I1的坐标概略值及加权平均值,列入表4-4中。
22 将这两条导线用等权替代为一条权为P12=0.5的导线,其边数为2。编号为XI1。
从I1J1到I2J2的导线边数为5,权P3=0.2。将以上三条导线用等权替代为一条边数为7的导线,权P123=0.143。编号为XI2。
再用单结点导线计算的方法求得结点I2的坐标概略值及最或是值。
最后将结点I2的坐标最或是值与由等权替代法求得的结点I2的坐标概略值之差按单位权改正到结点I1上,
VXI??4mm
1 VYI??1mm
1最后得到结点I1的坐标最或是值。这样,双结点导线就化为5条附合导线。 双结点导线坐标计算 表4-4 起始边 结点 坐标概略值 边数S 权=1S 坐标最或是值 V(mm) PVV AB X:9999.990 Y:8888.990 X:9999.980 Y:8888.970 X:9999.985 Y:8888.980 4 4 2 5 7 4 4 0.250 0.250 0.500 0.200 0.143 0.250 0.250 X:5555.541 Y:4444.446 X:9999.981 Y:8888.981 -9 -9 1 11 -4 1 -10 1 -14 2 6 -10 1 8 20.25 20.25 0.25 30.25 20.00 0.20 9.00 25.00 0.25 16.00 49.75 91.70 CD I1 XI1 I1J1 XI2 FE HG ∑PVVX ∑PVVY I2 X:5555.555 Y:4444.444 X:5555.535 Y:4444.456 X:5555.540 Y:4444.438 结点坐标单位权中误差:?X=±4.1mm
5.5mm ?Y=±
结点坐标点位中误差:MMI1?±8.6mm ?±8.6mm
I24.导线测量错误的检查
如果导线角度闭合差或导线的相对精度超出规定的范围,说明导线的计算或观测值存在问题。在确定计算和观测值没有问题之后,应对导线进行复测。这时候如果能确定外业测量最可能产生错误之处,从此处开始复测,便可取得事半功倍的效果。下面介绍一种检查角度观测值测量错误的方法,供测量人员参考。
1)角度观测误差的检查
在复查时,先从导线起点开始,用观测值计算各导线点的坐标,然后从导线的终点开始,用观测值计
算各导线点的坐标。再对这两组坐标进行比较,选择两次计算的最为接近的点作为可疑点,在该点重新测量水平角。
这种检查方法的原理很简单,如图4—10所示,假定导线某点的水平角度测量有误,在计算时,该点以后边的方位角受其影响,使导线产生偏移。因此,在比较两次计算的坐标值时,只有该点的两组坐标最为接近。
2)边长测量错误检查
假定某边的长度测量有错误,而其它边长和全部转折角没有错误,则引起该边以后的导线 平行移动。因此,如图4—11所示,测量有错的边与导线全长闭合差的方向平行,边长错误差值也与导线全长闭合差大致相等。
?34?arctg3)边角测量均有错误的检查
由角度测量错误和边长测量错误的检查方法可以看出,当边、角测量都有错误时,测错角处的坐标增量闭合差方向与测错的边平行,测错边的差值与测错角处的坐标增量闭合差大小相当。
必须指出的是,以上三种方法仅适用于一个角和一条边测错的情况。
fYfX
5.导线测量的精度
导线测量的精度取决于角度测量和边长测量的精度,而目标偏心误差和仪器对中误差直接影响观测精度。
1)目标偏心和仪器对中误差
如图4-12所示,由于目标偏心误差e的存在,使目标J偏至J?。当e垂直于视线时,对测角的影响最大;当e平行于视线时,对测角的影响最小。但实际上,偏心误差所在的位置无法确定。为了便于分析计算,将它分解为视线方向的分量et和垂直于视线方向的分量eu,并令它们相等。那末,一个目标的偏心误差为:
m偏=
euS????e2S???
当两个目标都有偏心误差,而边长也为S时 m偏=
eS??? (4-11)
同样可得,仪器对中误差e对测角的影响为:
m中=
2eS??? (4-12)
当e=3mm时,对平均边长为500m的一级导线来说
m偏=1.2″ m中=1.8″ 两种误差的共同影响为m=±2.2″ 《工程测量规范》规定,一级导线的测角中误差为±5″,而目标偏心和对中误差的影响就有±2.2″,因此必须予以重视。在实际操作中,应采取一些有效措施,如用光学对点器对中或三联角架法来减小其影响。
2)直伸等边导线端点与最弱点的点位中误差
直伸等边导线是单导线中的特例,为了方便,用它来研究导线端点和最弱点(中点)的点位中误差。 检验导线测量精度一个最明显的指标是导线的角度闭合差和导线的相对精度。导线终点的点位中误差是由坐标增量闭合差fX、fY及导线全长闭合差f?fX?fY来确定。分析时将f分解为与导线方向平
22行的纵向误差mt和与导线方向垂直的横向误差mu。mt主要由测距误差引起,而mu主要由测角误差引起。
图4-13为两边附合到已知控制点的直伸等边导线。设导线长度为L,边数为n,导线边长为S,mS为每边测距偶然误差,?为测距误差系数,m?为测角中误差。经过角度闭合差的调整,由测量误差所引起的导线端点纵向误差mt和横向误差mu为:
?m?n?m2?L2?2tS? ?m??n?1??n?2? (4-13)
L?mu??12n? 经过平差后,导线中点的纵向误差和横向误差为: mt中=
n2mS
mu中=
m??L?n?2??n2?2n?4? (4-14)
192n?n?1?上式中均未考虑起始数据误差对mt、mu的影响。令控制边AB的边长误差为mab,其对导线终点点位中误差的影响为mt’、mu’,起始方位角的影响为m?