(2) tx(t?3)
解 F[x(t?3)]?X(?)e?j3? F[tx(t?3)]?j
(3) x(3?t)
d[X(?)e?j3?]?jX'(?)e?j3??3X(?)e?j3? d?解 F[x(t?3)]?X(?)ej3? F[x(3?t)]?X(??)e?j3?
(4) (t?3)
dx(t?3) dt解 F[x'(t)]?j?X(?)
d F[tx'(t)]?j[j?X(?)]??[?X'(?)?X(?)]
d?d F[(t?3)x(t?3)]??[X(?)??X'(?)]e?j3?
dt
(5) x(at?b)
解 F[x(t?b)]?X(?)ejb?
1?j? F[x(at?b)]?X()ea
aa
(6)
b???x(3??2)d?
?3t?2t
11tx(v)?dv?g(3t?2), g(t)?x(v)dv ??33??1X(?)1X(?)???(?)X(0)],F[g(t?2)]?[???(?)X(0)]ej2? F[g(t)]?[3j?3j?解 令3??2?v 则有:
?2X()j?1?3???()X(0)]e3 F[g(3t?2)]?[?93j3?X()j2?t1?3e3?X(0)?(?). ??x(3??2)d????3j?3?
3.4 在题图3.2(b)中取T??,将x2(t)进行周期为T的周期延拓,得到周期信号xT(t),
如题图3.4(a)所示;取xT(t)的2N?1个周期构成截取函数xN(t),如题图3.4(b)
所示。
(1) 求周期信号xT(t)傅里叶级数系数; (2) 求周期信号xT(t)的傅里叶变换; (3) 求截取信号xN(t)的傅里叶变换。
T A ? ? t -T o T (a) x(t) N A ? ? t -NT -T2x(t) o T2 NT (b) 题图3.4
解 (1) 设单个三角波脉冲为x(t),其傅里叶变换X(?)?根据傅里叶级数XT(k?1)和傅里叶变换X(?)之间的关系知:
AT2?T Sa241X(?)??k?
1T1AT2?TS ??
T2a4??k?1 XT(k?1)? ?A2k?1TA2k?Sa?Sa2422XT(k?1)?(??k?1) ?k???Sa2?k???2?k???N??(??1T?2?)
(2) 由周期信号的傅里叶变换知:
F[xT(t)]?2? ?2?Ak??(??k?1)2
??A?Sa2k??(??k?1) 2(3) 因为xN(t)?x(t?nT) ?n??NNN?jn?T F[xN(t)]?F[x(t?nT)]??X(?)e?n??Nn??N1?ej(2N?1)T??j?X(?)ejT?1?eN?T
11sin(N?)T?sin(N?)T?AT2?T22?X(?)? ?Sa1124 sinT?sinT?22
3.5 绘出下列信号波形草图,并利用傅里叶变换的对偶性,求其傅里叶变换。
(1) x1(t)?Sa(?t0t)
(2) x2(t)?Sa2(?t0t)
[提示:参见脉冲信号和三角波信号的傅里叶变换]
F解(1) ?A[?(t?)??(t?)]???A?Sa????222 , ?根据对偶知:
Sa(
?t0Ft)???t0[?(???t0)??(???t0)]
解(2) ?
A A?F ???2-?/2 o ?/2 t Sa2(t??4)
Sa2( ?根据对偶知:
?t0Ft)???
0 ? -2?t0 o 2?t0
3.6 已知x(t)的波形如题图3.6(a)所示,
(1) 画出其导数x'(t)及x''(t)的波形图;
(2) 利用时域微分性质,求x(t)的傅里叶变换;
(3) 求题图3.6(b)所示梯形脉冲调制信号xc(t)?x(t)cos?ct的频谱函数。
1 x(t) x(t) c 1
t -2? -? 0 ? 2? (a) 题图3.6
t
-2? 2?
(b)
解(1) x'(t)及x\(t)的波形如下:
1/? ? 2? -2? -? 0 t x'(t) (1/?)?(t?2?) (1/?)?(t?2?)
-? ? x''(t)
-2? 0 2? t (2) ?F[x\(t)]?X2(?)?[ej2???ej???e?j???e?j2??]?(cos2???cos??)
??X(?)X(?)2??X2(0)?(?)?2??[cos2???cos??] ?F[x'(t)]?X1(?)?2j?j??j?X(?)X(?)2??X1(0)?(?)?1 ?F[x(t)]?X(?)?1?2[cos???cos2??] j?j???11(3) F[xc(t)]?X(???c)?X(???c)
22
3.7 求下列频谱函数的傅里叶逆变换。 (1)
121
2?j?1]?e?2t?(t) j??2解 F?1[ (2)
1
(2?j?)2?j2d11[]??解 ?j d?j??2(j??2)2(j??2)21?2t ?F?1[]?te?(t)
(j??2)2 (3)
1(2?j?)2?1
112j?2j1??解 ?
1?(j??2)2j??(?2?j)j??(?2?j)11(?2?j)t1(?2?j)t ?F?1[]?[e?e]?(t) 22j2j(j??2)?1 ?e?2tsint?(t).
(4) 4sin2?
解 ?4sin2??4?1j2??j2?[e?e]??2j[ej2??e?j2?] 2j ?F?1[4sin2?]??2j[?(t?2)??(t?2)]
(5)
1?2
解 ?F[1]?2??(?)
1dj?[2??(?)]?j??'(?). ???(3.7.5.1) 2d?1又?F[?(t)]????(?)
j?d1?1 ?F[t?(t)]?j[???(?)]?2?j??'(?). ???(3.7.5.2)
d?j??1t由(3.7.5.1)、(3.7.5.2)式可知:?F[]?F[t?(t)]
?221tt1 ?F?1[2]??t?(t)??[2?(t)?1]??tSgn(t)
222? ?F[]? (6) sint2????2/2
解 ?F[?(t?)??(t?)]????sin2??2
22?? F?1[sin
????2/1??]?[?(t?)??(t?)] 2?22