当8?n?10时:x(n)?h(n)?当n?11时:x(n)?h(n)?0
2m?m?n?55?2n?5(211?n?1)
?2n?1?4?? ?x(n)?h(n)??2n?5(2n?9?1)?0??
nn4?n?78?n?10
n为其它值?1??1?(9) x(n)????(n), h(n)????(n)
?3??2?解 x(n)?h(n)? ? ?x(m)h(n?m) ?m???()m?(m)?()n?m??(n?m) ?2m???3()m?()n?m??(n) ?2m?03n??11111nn2m ?()?()??(n)
2m?03 ?[3()n?2()n]?(n)
1213?1?(10) x(n)??(n)??(n?3), h(n)????(n)
?2?解 x(n)?h(n)? ?nx(m)h(n?m) ?m???[?(m)??(m?3)]()n?m?(n?m) ?2m???n??1n1n?m1??(n)??()n?m??(n?3) ??()m?02m?32 ?[2?()n]?(n)?[2?23?n]?(n?3)
121n?2?()?2?1?或写作:h(n)?x(n)??23?n?()n2??0??
2.3 求下列连续信号的卷积。
0?n?2n?3n??1
0?t?1?1?1?t?2, (1) x(t)??2?0其它?1?t?3?2h(t)??
其它?0
x(?)
2
1
? 0 1 2
h(??)
2
? -2 -1 0
解 参见右图:
当t?0时: x[t]?h[t]?0
?01t当1?t?2时:x(t)?h(t)??2d???4d?01?2?4(t?1)?4t?2
12当0?t?1时:x(t)?h(t)?2?d??2t
t?t?2?12当3?t?4时:x(t)?h(t)??4d??4(4?t)?16?4t
t?2当t?4时: x(t)?h(t)?0
当2?t?3时:x(t)?h(t)?2d??4d??2(3?t)?4?10?2t
?2t?4t?2?? ?x(t)?h(t)??10?2t?16?4t???00?t?11?t?22?t?3 3?t?4t为其它值
(2) x(t)和 h(t)如图2.3.2所示
1
x(t) t -3 -2 -1 0
1
h(t)
t 0 1 2
题图2.3.2
解 当t??2时:x(t)?h(t)?0
当?2?t??1时:x(t)?h(t)??t?1?3d??t?2 当?1?t?0时: x(t)?h(t)??t?1t?2d??1
当0?t?1时: x(t)?h(t???1t?2d??1?t
当t?1时: x(t)?h(t)?0
??t?2?2?t??1?x(t)?h(t)???1?1?t?0?1?t0?t?1
??0t取其它值
(3) x(t)??(t?1)??(t?2),
h(t)?e?2t?(t)
解 x(t)?h(t)?e?2(t?1)?(t?1)?e?2(t?2)?(t?2)
(4) x(t)??(t?1)?2?(t)cos?t, h(t)?sin(?t??)
解 x(t)?h(t)?sin[?(t?1)??]?2sin(?t??)
(5) x(t)??(t)??(t?1), h(t)?(t?1)[?(t?1)??(t?2)]解 参见右图。当t?1时:x(t)?h(t)?0 当1?t?2时: x(t)?h(t)??t1(??1)d??12t2?t?32
当2?t?3时: x(t)?h(t)??2?1(??1)d??92?12t2t
当t?3时: h(t)?x(t)?0
??1t2?t?31?t?2?22 ?x(t)?h(t)???91??2t222?t?3 ??0t为其它值?
(6) x(t)??(t)??(t?2), h(t)?e??t?(t)
解 x(t)?h(t)?????e????(?)?[?(t??)??(t???2)]d?
h(?)
3 2 ? 0 1 2 x(??)
?
1 -1 0
??e???d???0tt?2???ed?0
?1?(1?e??t)?(t)?1?[1?e??(t?2)]?(t?2)
(7) x(t)??(t)??(t?4), h(t)??(t)
解 x(t)?h(t)????x(?)?h(t??)d? ???[?(?)??(??4)]??(t??)d? ??tt??d???(t)??d???(t?4) 04?t??(t)?(t?4)?(t?4)
?
(8) x(t)?e??t?(t), h(t)?sin?t?(t)
解 x(t)?h(t)????x(t??)h(?)d? ???sin???(?)?e??(t??)?(t??)d? ??t?e??t?sin???e??d???(t)
0?[???2??2sin?t????2??2(cos?t?e??t)]?(t)
(9) x(t)?e?t?(t), h(t)???(t?n)
n?0?t
?t解 x(t)?h(t)?e?(t)?
?(t?n)??e?n?0n?0???(t)??(t?n)??e?(t?n)?(t?n)
n?0?2.4 试求题图2.4示系统的总冲激响应表达式。
- + x(t) + + y(t) h1(t) h2(t) ? ? h3(t) h5(t) 题图2.4
h4(t) 解 h(t)?h5(t)?h1(t)?[h2(t)?h3(t)?h4(t)]
2.5 已知系统的微分方程及初始状态如下,试求系统的零输入响应。 (1)
dy(t)?5y(t)?x(t); y(0?)?3 dt解 y(t)?ce?5t,?y(0)?c?3,?y(t)?3e?5t
d2y(t)dy(t)dx(t)??(2) ; y(0)?1,y'(0)?2 ?5?6y(t)??x(t)dtdtdt2解 y(t)?c1e?2t?c2e?3t,y'(t)??2c1e?2t?3c2e?3t,
?y(0?)?c1?c2?1,y'(0?)??2c1?3c2?2,可定出c1?5,c2??4
?y(t)?5e?2t?4e?3t t?0
d2y(t)dy(t)?4?4y(t)?x(t); y(0?)??1,y'(0?)?1 (3)
2dtdt解 y(t)?(c1?c2t)e?2t,y'(t)?c2e?2t?2(c1?c2t)e?2t
?y(0?)?c1??1,y'(0?)?c2?2c1?1,可定出c1??1,c2??1 ?y(t)??(1?t)e?2tt?0
2.6 某一阶电路如题图2.6所示,电路达到稳定状态后,开关S于t?0时闭合,试求输出响应uo(t)。
2? S +
+ 4V 1F 2? o - - 题图2.6 u(t)解 由于电容器二端的电压在t=0时不会发生突变,所以u0(0?)?4V。 根据电路可以立出t>0时的微分方程:
u0(t)du(t)du0(t)?1?0]?4, 整理得 ?u(t)?2 2dtdt齐次解:u0c(t)?c1e?t
非齐次特解:设u0p(t)?B 代入原方程可定出B=2
u0(t)?2?[
?u0(t)?u0c(t)?u0p(t)?2?c1e?t