七年级数学(上)导学案全套(122页)(10)

2025-10-16

数字因数 字母因数 小结:一个单项式中,单项式中的数字因数称为这个单项式的________一个单项式中,_____________的指数的和叫做这个单项式的次数

4.学生阅读课本55页,完成例1

【课堂练习】:

1.课本p56:1,2。

2.判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。

①x+1; ②

31; ③πr2; ④-a2b。 x2答:

3.下面各题的判断是否正确? ①-7xy2的系数是7;( ) ②-x2y3与x3没有系数;( ) ③-ab3c2的次数是0+8+2;( ) ④-a3的系数是-1;( ) ⑤-32x2y3的次数是7;( ) ⑥πr2h的系数是。( )

【要点归纳】: 1. 单项式:

2. 单项式系数和次数:

3.通过例题及练习,应注意以下几点: ①圆周率π是常数;

②当一个单项式的系数是1或-1时,“1” 通常省略不写,如x2,-a2b等; ③单项式次数只与字母指数有关 【拓展训练】: 1、

13133b,x+1, -2,?, 0.72xy,各式中单项式的个数是( ) a3 A. 2个 B.3个 C.4个 D.5个 2、单项式-x2yz2的系数、次数分别是( ) A. 0,2 B. 0, 4 . C. -1,5 D.1,4

【总结反思】:

46

课题:2.1 多项式

【学习目标】:

1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。 2.能确定一个多项式的项数及其次数。

【学习重点】:多项式的定义、多项式的项和次数,以及常数项等概念。 【学习难点】:多项式的次数。 【导学指导】: 一、温故知新:

1.下列说法或书写是否正确: ①1x ②-1x ③a〓3 ④a〔2 ⑤ 1⑥b的系数为1,次数为0 ⑦ 2?R的系数为2,次数为2 2.列代数式:

(1)长方形的长与宽分别为a、b,则长方形的周长是 ; (2)某班有男生x人,女生21人,则这个班共有学生 人; (3)一个数比数x的2倍小3,则这个数为_________;

(4)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。

2.观察以上所得出的四个代数式与上节课所学单项式有何区别。 (由小组讨论后,经小组推荐人员回答)

二、自主探究: 1.多项式:

学生阅读课本57页完成下列问题:

上面这些代数式都是由几个单项式相加而成的。像这样,_______________的和叫做多项式。在多项式中,每个单项式叫做多项式的___。其中,不含字母的项,叫做_______。 例如,多项式3x?2x?5有_____项,它们是______________。其中常数项是________。

212xy 4一个多项式含有几项,就叫几项式。多项式里________________________,叫做这个多项式的次数。例如,多项式3x?2x?5是一个____次______项式。

2问题:

(1)多项式的次数是所有项的次数之和吗? (2)多项式的每一项都包括它前面的符号吗?

2、自学例2、例3(教师指导)

47

注:__________与___________统称整式。

【课堂练习】:

1.课本59页1、2 (直接做在课本上)

【要点归纳】:

1.你知道多项式的定义、多项式的项和次数,以及常数项等概念了吗?

2. 整式的概念:__________与___________统称整式。

【拓展训练】:

1.下列说法中,正确的是( )

?2x2y A、单项式的系数是?2,次数是3     B、单项式a的系数是0,次数是03

32ab9 C、?3x2y?4x?1是三次三项式,常数项是1  D、单项式?的次数是2,系数为?22

2.下列关于23的次数说法正确的是( )

A. 2次 B. 3次 C. 0次 D. 无法确定 3.-

524ab-ab+1是 次 项式,其中三次项系数是 ,二次项43m?1为 ,常数项为 ,写出所有的项 。 4.如果?5xy

【总结反思】:

为四次单项式,则m=____;

48

课题:2.2 同类项

【学习目标】:

1.理解同类项的概念,在具体情景中,认识同类项。 2.初步体会数学与人类生活的密切联系。

【学习重点】:理解同类项的概念。

【学习难点】:根据同类项的概念在多项式中找同类项。 【导学指导】:

一.知识链接

1.运用有理数的运算律计算:

(1)100〓2+252〓2=__________, (2)100〓(-2)+252〓(-2)=__________, (3)100t+252t=__________,

思路点拨:根据逆用乘法对加法的分配律可得。 2.请根据上面得到结论的方法探究下面各式的结果: (1)100t—252t=( )t (2)3x2 + 2 x2 = ( ) x2

(3)3ab2 - 4 ab2 = ( ) ab2

上述运算有什么共同特点,你能从中得出什么规律?

二.自主学习 同类项的定义:

1.观察:3x2 和 2 x2 ; 3ab2 与 -4 ab2 在结构上有哪些相同点和不同点? 2.归纳:_______________________________________________叫做同类项 ____________________也是同类项。如3和-5是同类项

【课堂练习】:

1、判断下列说法是否正确,正确地在括号内打“√”,错误的打“〓”。

(1)3x与3mx是同类项。 ( ) (2)2ab与-5ab是同类项。 ( )

(3)3x2y与-yx2是同类项。 ( ) (4)5ab2与-2ab2c是同类项。 ( ) (5)23与32是同类项。 ( )

2、下列各组式子中,是同类项的是( )

A、3xy与?3xy B、3xy与?2yx C、2x与2x D、5xy与5yz

222133、在下列各组式子中,不是同类项的一组是( ) A、 2 ,-5 B、 -0.5xy2, 3x2y C、 -3t,200πt D、 ab2,-b2 a

4、已知xmy2与-5ynx3是同类项,则m= ,n= 。

49

5、指出下列多项式中的同类项:

(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2;

6、游戏:

规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。要求出题同学尽可能使自己的题目与众不同。请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。

【要点归纳】:

1332 1. 同类项的概念:

2.注意:

① 两个相同:字母相同;相同字母的指数相等。 ② 两个无关:与系数无关;与字母顺序无关。 ③ 所有的常数项都是同类项。

④ 两个项虽然所含字母相同,但相同字母的指数不全相同就不是同类项。

【拓展训练】:

1、若5xy和?9x3mn?12y是同类项,则m=_________,n=___________。

2、若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。

(1)(s+t)-(s-t)-(s+t)+(s-t); (2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+(s-t)。

3、观察下列一串单项式的特点:

13153416xy ,?2x2y ,4x3y ,?8x4y ,16x5y ,…

(1)按此规律写出第6个单项式.

(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?

【总结反思】:

50


七年级数学(上)导学案全套(122页)(10).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:学校加强安全技术防范系统建设方案

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219