q为负值,则该氨基酸带负电荷。q值的正与负和该氨基酸所带电荷的种类 是一致的。如果采用q=pH-pI来表达,则会出现相反的结果,即q为负值时,氨基酸带正电荷;q为正值时,氨基酸带负电荷。因此,用pI-pH更好。
9.------------------返回试题
[答] 当甘氨酸溶液的pH低于6.0时,氨基以带正电荷的形式存在,带正电荷的氨基通过静电相互作用(诱导效应)使羧基更容易失去质子,成为更强的酸。
10.------------------返回试题
[答](1)Ala ,Ser,Phe和Leu的pI在6左右。在PH3.9时,都带净正电荷,所以向阴极移动,但彼此不能分开;His和Arg的pI分别是7.6和 10.8,在pH3.9时,它们亦带净正电荷向阴极移动。由于它们带的正电荷多,所以能和其他向阴极移动的氨基酸分开;Asp的pI是3.0,在 PH3.9时,它带负电荷,向阳极移动。(2)电泳时若氨基酸带有相同电荷,则相对分子质量大的移动速度较慢。因为相对分子质量大的氨基酸,电荷与质量的 比小,导致单位质量受到的作用力小,所以移动慢。
11.------------------返回试题
[答](1)可能的种类数为20!≈ ;(2)可能的种类数为2020≈ 。
12.------------------返回试题
. [答] 在游离的氨基酸中,带正电荷的 使带负电荷的-COO-稳定,使羧基成为一种更强的酸。相反地,带负电荷的羧酸使 稳定,使它成为一种更弱的酸,因而使它的pKa升高。当肽形成时,游离的 -氨基和 -羧基分开的距离增大,相互影响降低,从而使它们的pKa值发生变化。
13.------------------返回试题
[答](1)多聚亮氨酸的R基团不带电荷,适合于形成 -螺旋。(2)异亮氨酸的 -碳位上有分支,所以形成无规则结构。(3)在pH7.0时,所有精氨酸的R基团带正电荷,由于静电斥力,使氢键不能形成,所以形成无规则结构。(4)在 pH13.0时,精氨酸的R基团不带电荷,并且 -碳位上没有分支,所以形成 -螺旋。(5)在pH1.5时,谷氨酸的R基团不带电荷,并且 -碳位上没有分支,所以形成 -螺旋。(6)因为苏氨酸 -碳位上有分支,所以不能形成 -螺旋。(7)脯氨酸和羟脯氨酸折叠成脯氨酸螺旋,这是一种不同于 -螺旋的有规则结构。
14.------------------返回试题
[答] 随着蛋白质相对分子质量(Mr)的增加,表面积与体积的比率也就是亲水残基与疏水残基的比率必定减少。为了解释这一点,假设这些蛋白质是半径为r的球状蛋 白质,由于蛋白质Mr的增加,表面积随r2增加而增加,体积随r3的增加而增加,体积的增加比表面积的增加更快,所以表面积与体积的比率减少,因此亲水残 基与疏水残基的比率也就减少。
15.------------------返回试题
[答] 肌红蛋白以单体的形式存在,血红蛋白以四聚体的形式存在,血红蛋白分子中有更多的亲水残基,说明疏水作用对于亚基之间的结合有重要意义。
16.------------------返回试题
[答] 维持蛋白质溶液稳定的因素有两个:(1)水化膜:蛋白质颗粒表面大多为亲水基团,可吸引水分子,使颗粒表面形成一层水化膜,从而阻断蛋白质颗粒的相互聚 集,防止溶液中蛋白质的沉淀析出。(2)同种电荷:在pH≠pI的溶液中,蛋白质带有同种电荷。若pH>pI,蛋白质带负电荷;若pH 17.------------------返回试题 [答](1)除共价键外,维持蛋白质结构的主要非共价键有:范德华力(范德华相互作用)、疏水作用、盐键、氢键。(2)DNA是由4种元件构成的大分子, 蛋白质是由20多种元件构成的大分子,显然,蛋白质的分子结构更具复杂性,DNA的双螺旋结构有一定的刚性,其空间结构相对简单,蛋白质作为单链分子,可 以形成各种复杂的空间结构,由于结构的复杂性,蛋白质的功能广泛而复杂,且结构和功能受到复杂的调控,DNA的功能则相对简单。综合而论,蛋白的研究更具 复杂性和挑战性。 18.------------------返回试题 [答](1)能提高蛋白质的稳定性。亚基结合可以减少蛋白质的表面积/体积比,使蛋白质的稳定性增高。(2)提高遗传物质的经济性和有效性。编码一个能装 配成同聚体的单位所需的基因长度比编码一个与同聚体相同相对分子质量的超长肽链所需的基因长度要小得多(如烟草花叶病毒的外壳有2130多个亚 基)。(3)形成功能部位。不少寡聚蛋白的单体相互聚集可以形成新的功能部位。(4)形成协同效应。寡聚蛋白与配体相互作用时,有可能形成类似血红蛋白或 别构酶那样的协同效应,使其功能更加完善。有些寡聚蛋白的不同亚基可以执行不同的功能,如一些酶的亚基可分为催化亚基和调节亚基。 19.------------------返回试题 [答](1)由于2,3-BPG是同脱氧Hb A中心空隙带正电荷的侧链结合,而脱氧Hb F缺少带正电荷的侧链( 链143位的His残基),因此2,3-BPG是同脱氧Hb A的结合比同脱氧Hb F的结合更紧。(2)2,3-BPG稳定血红蛋白的脱氧形式,降低血红蛋白的氧饱和度。由于Hb F同 2,3-BPG亲和力比Hb A低,HbF受血液中2,3-BPG影响小,因此Hb F在任何氧分压下对氧的亲和力都比Hb A大,(3)亲和力的这种差别允许氧从母亲血向胎儿有效转移。 20.------------------返回试题 [答] 蛋白质变性后,氢键等次级键被破坏,蛋白质分子就从原来有秩序卷曲的紧密结构变为无秩序的松散伸展状结构。即二、三级以上的高级结构发发生改变或破坏,但 一 级结构没有破坏。变性后,蛋白质的溶解度降低,是由于高级结构受到破坏,使分子表面结构发生变化,亲水基团相对减少,容易引起分子间相互碰撞发生聚集沉 淀,蛋白质的生物学功能丧失,由于一些化学键的外露,使蛋白质的分解更加容易。 21.------------------返回试题 [答](1)在低pH值时,羧基质子化,蛋白质分子带有大量的净正电荷,分子内正电荷相斥使许多蛋白质变性,蛋白质分子内部疏水基团因此而向外暴露,使蛋 白质溶解度降低,因而产生沉淀。(2)加入少量盐时,对稳定带电基团有利,增加了蛋白质的溶解度。但是随着盐离子浓度的增加,盐离子夺取了与蛋白质结合的 水分子,降低了蛋白质的水合程度。使蛋白质水化层破坏,从而使蛋白质沉淀。(3)在等电点时,蛋白质分子之间的静电斥力最小,所以其溶解度最小。(4)加 热会使蛋白质变性,蛋白质内部的疏水基团被暴露,溶解度降低,从而引起蛋白质沉淀。(5)非极性溶剂减小了表面极性基团的溶剂化作用,使蛋白质分子与水之 间的氢键减少,促使蛋白质分子之间形成氢键,蛋白质的溶解度因此而降低。(6)介电常数的下降对暴露在溶剂中的非极性基团有稳定作用,促使蛋白质肽链的展 开而导致变性。 22.------------------返回试题 [答] 凝胶过滤时,凝胶颗粒排阻Mr较大的蛋白质,仅允许Mr较小的蛋白质进入颗粒内部,所以Mr较大的蛋白质只能在凝胶颗粒之间的空隙中通过,可以用较小体积 的洗脱液从层析柱中洗脱出来。而Mr小的蛋白质必须用较大体积的洗脱液才能从层析柱中洗脱出来。SDS- PAGE分离蛋白质时,所有的蛋白质均要从凝胶的网孔中穿过,蛋白质的相对分子质量越小,受到的阻力也越小,移动速度就越快。 23.------------------返回试题 [答] DEAE-纤维素柱层析的结果说明,在pH6的条件下,A带有较多的负电荷,B次之,C带负电荷最少。凝胶过滤法测出A的Mr是C的4倍,B的Mr是C的 2倍,但SDS-PAGE只发现一条带。由于SDS-PAGE测定的亚基的Mr,凝胶过滤法可以测定寡聚体的Mr,可以推断C是单体,B是以C为亚基的二 聚体,A是以C 为亚基的4聚体,由于C在pH6时带负电荷,随着亚基数的增加,带负电荷的量也会增加,这与DEAE-纤维素层析的结果也是一致的。 24.------------------返回试题 [答](1)共性:用量少而催化效率高;仅改变化学反应的速度,不改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的活化能。(2) 特性:酶作为生物催化剂的特点是催化效率更高,具有高度的专一性,容易失活,活力受条件的调节控制,全酶的活力与辅助因子有关。 25.------------------返回试题 [答](1)v-[S]图是直角双曲线,可以通过其渐近线求Vmax,v=1/2Vmax时对应的[S]为Km;优点是比较直观,缺点是实际上测定时不容 易达到Vmax,所以测不准。(2)1/v-1/[S]图是一条直线,它与纵轴的截距为1/Vmax,与横轴的截距为-1/Km,优点是使用方 便,Vmax和Km都较容易求,缺点是实验得到的点一般集中在直线的左端,作图时测定值稍有偏差,直线斜率就会有较大的偏差,Km就测不准。(3)v- v/[S]图也是一条直线,它与纵轴的截距为Vmax,与横轴的截距为Vmax/Km,斜率为-Km,优点是求 Km比较方便,缺点是作图前计算较 繁。(4)[S]/v-[S]图也是一条直线,它与纵轴的截距为Km/Vmax,与横轴的截距为-Km,优缺点与v-v/[S]图相似。(5)直接线性作 图法是一组交于一点的直线,交点的横坐标为Km,纵坐标为Vmax,是求Vmax和Km的最好的一种方法,不需计算,作图方便,缺点是实验测定值往往不会 全部相交于一点,会给数据取舍造成一定的困难。 26.------------------返回试题 [答] 据v-[S]的米氏曲线,当底物浓度远远低于Km值时,酶不能被底物饱和,从酶的利用角度而言,很不经济;当底物浓度远远高于Km值时,酶趋于被饱和,随 底物浓度改变,反应速度变化不大,不利于反应速度的调节;当底物浓度在Km值附近时,反应速度对底物浓度的变化较为敏感,有利于反应速度的调节。 27.------------------返回试题 [答] 酶蛋白分子中组氨酸的侧链咪唑基pK值为6.0~7.0,在生理条件下,一部分解离,可以作为质子供体,一部分不解离,可以作为质子受体,既是酸,又是碱,可以作为广义酸碱共同催化反应,因此常参与构成酶的活性中心。 28.------------------返回试题 [答] 竞争性抑制是指抑制剂I和底物S对游离酶E的结合有竞争作用,互相排斥,已结合底物的ES复合体,不能再结合I;同样已结合抑制剂的EI复合体,不能再结 合S。多数竞争性抑制在化学结构上与底物S相似,能与底物S竞争与酶分子活性中心的结合,因此,抑制作用大小取决于抑制剂与底物的浓度比,加大底物浓度, 可使抑制作用减弱甚至消除。竞争性抑制作用的双倒数曲线与无抑制剂的曲线相交于纵坐标I/Vmax处,但横坐标的截距,因竞争性抑制存在而变小,说明该抑 制作用,并不影响酶促反应的最大速度Vmax,而使Km值变大。非竞争性抑制是指抑制剂I和底物S与酶E的结合互不影响,抑制剂I可以和酶E结合生成 EI,也可以和ES复合物结合生成ESI。底物S和酶E结合成ES后,仍可与I结合生成ESI,但一旦形成ESI复合物,再不能释放酶E和形成产物P。其 特点是:I和S在结构上一般无相似之处,I常与酶分子活性部位以外的化学基团结合,这种结合并不影响底物和酶的结合,增加底物浓度并不能减少I对酶的抑制 程度。非竞争性抑制剂的双倒数曲线与无抑制剂的曲线相交于横坐标- 1/Km处,但纵坐标的截距,因竞争性抑制存在变大,说明该抑制作用,不影响酶促反应的Km值,而使Vmax值变小。 29.------------------返回试题 [答] 酶的活性中心往往是若干个在一级结构上相距很远,但在空间结构上彼此靠近的氨基酸残基集中在一起形成具有一定空间结构的区域,该区域与底物相结合并将底物 转化为产物,对于结合酶来说,辅酶或辅基往往是活性中心的组成成分。酶的活力中心通常包括两部分:与底物结合的部位称为结合中心,决定酶的专一性;促进底 物发生化学变化的部位称为催化中心,它决定酶所催化反应的性质以及催化的效率。有些酶的结合中心与催化中心是同一部分。对ES和EI的X-射线晶体分析、 NMR分析、对特定基团的化学修饰、使用特异性的抑制剂和对酶作用的动力学研究等方法可用于研究酶的活性中心。 30.------------------返回试题 [答] 影响酶催化效率的有关因素包括:(1)底物和酶的邻近效应与定向效应,邻近效应是指酶与底物结合形成中间复合物后,使底物和底物(如双分子反应)之间,酶 的催化基团与底物之间结合于同一分子而使有效浓度得以极大的升高,从而使反应速率大大增加的一种效应;定向效应是指反应物的反应基团之间和酶的催化基团与 底物的反应基团之间的正确取位产生的效应。(2)底物的形变和诱导契合(张力作用),当酶遇到其专一性底物时,酶中某些基团或离子可以使底物分子内敏感键 中的某些基团的电子云密度增高或降低,产生―电子张力‖,使敏感键的一端更加敏感,底物分子发生形变,底物比较接近它的过渡态,降低了反应活化能,使反应 易于发生。(3)酸碱催化,酸碱催化是通过瞬时的向反应物提供质子或从反应物接受质子以稳定过渡态,加速反应的一类催化机制。(4)共价催化,在催化时, 亲核催化剂或亲电子催化剂能分别放出电子或接受电子并作用于底物的缺电子中心或负电中心,迅速形成不稳定的共价中间复合物,降低反应活化能,使反应加 速。(5)微环境的作用:酶的活性部位形成的微环境通常是疏水的,由于介电常数较低,可以加强有关基团之间的静电相互作用,加快酶促反映的速度。在同一个 酶促反应中,通常会有上述的3个左右的因素同时起作用,称作多元催化。 31.------------------返回试题 [答] 辅酶和辅基的主要作用是在反应中传递电子、质子或一些基团,辅酶与酶蛋白结合较松,可以用透析或超滤方法除去;辅基与酶蛋白结合紧密,不能用透析或超滤方法除去,辅酶和辅基的差别仅仅是它们与酶蛋白结合的牢固程度不同,无严格的界限。 32.------------------返回试题 [答] 底物浓度、酶含量、温度、pH、产物等均影响酶的活性,此外称为激活剂或抑制剂的某些无机或有机化学物质也会强烈影响酶的活性。天然酶在其自然环境中(细 胞或组织中)是受到细胞调控的。细胞对酶的活性的控制主要是通过代谢反馈、可逆的共价修饰、细胞区室化(不同的区室pH、底物浓度等不同,可以避免产物的 积累)和酶原激活等控制。制备酶制剂时,要尽量避免高温、极端pH、抑制剂等的影响,酶制剂应尽可能制成固体,并在低温下保存。无法制成固体的酶,可在液 态低温保存,但要注意某些液态酶在冰冻时会失去活性。 33.------------------返回试题 [答] 谷氨酸的?-羧基的pKa值约为4.0,在近中性条件下,该基团去质子化,在酶促反应中起着碱催化剂的作用。赖氨酸的?-氨基的pKa值约为10.0,在近中性条件下,它被质子化,在酶促反应中起着酸催化剂的作用。 34.------------------返回试题 [答](1)测定不同底物浓度下的酶促反应速度;(2)分别在几种不同抑制剂浓度存在下测定底物浓度对酶促反应速度的影响;(3)在测定相应反应速度后, 以1/v对1/[S]作图(双倒数图);(4)从坐标图上量取-1/Km和1/Vmax的距离,即可求出Km和Vmax;(5)比较无抑制剂和有抑制剂存 在下的Km和Vmax。在抑制剂存在下,如果Km增大,Vmax不变,表明该抑制剂是竞争性抑制剂;如果Km不变,Vmax降低,表明该抑制剂是非竞争性 抑制剂;如果Km和Vmax都降低且Vmax/Km保持不变,表明该抑制剂是反竞争性抑制剂。