oB8PkpatjJelPCzGN+ImKROQFN4CixbjBjOTkHvcA+fUN7sZ4N3edNNN7tH4wcA5C1qDiKRQHFWSwsU1A/1bSEo3KLwevTd0FOh8mTnhL56I+SQsxJOCLHT+OrB/EJ4DW2fQ5Uk19uwwCYTf3rwJmqS4B0adD3LJP5OkHANxyKD89jLZuzM1iO5HdZSZ7gpjLPohAzBgSIoQhyfFFjOLKt1N3gxB3ntvvSIpVU4/AQvEjBkzVEMsBvC4zz33XNVFjhPsTsF6I2B6UnFDL0HAqSgGjipJ8VTyBtOTgqQYI4kKb9533nmnMjR2TCTwWgDdpyjAk/Hmf/vtt6d197xjUiZRZIM3b4ImKfadKnQK2S9/P5ICzKLNGxS+roYXiyEiPA4TalWwc5wuR95jUh594UWN6pR6aJlni+1JoRM16VIk8JCIe0yKh7C2dV7hYbIoHxvMFR9qkvJDnCTlrRAKS0Nh0JxQCEn5wTsmle/AeTZAUnSZMOhiGJtJUuSv7uD8xyD66E7Biw0hbIiIl0R1d1SD1cScY/C8UE9qeu8Z0lzjTxRekopTP+TLDFaxujOgGCSFZ6ZtHZLKZ3ggHxxzJMUSBE1S7O0Tp2FQWHOP82IPnAd196I2IN4NNKd5vbsnRoWWh7fiMzwpV9SlNUtlRm//L0ezvQZEpLsWJnifjnO8F1YISbGVTOUdw9M/HW9g44bieFI0QAhKD5zn83GIfMCsYdzdPRN094rxYAPoiF5KLp99i4I2R1L0z3miEIL2rYqqbApruuzFICleiNTyM1Cv4SdzvuVgCQKzKTr/bLN7+eavPSleUdCTCxp4U29d0lvN+HnBkxoi8i4YxHiZ+mb2B28rKklRjnmlc2Xz4s0OZ6bGu0x84hOfkFNOOcWNxQe8R158Re/cQ49pRrVBL3RdXnHFFWlbtcSVv0axxqS0/NhAsdDmSMrs7sUNL0nFDa8nFTfM2b1iQJOUFzQXGs2aKatTg9YG2NMKkvKu4Od9KxYRXn755Wr2LxpJtaovMdfeV5PobjrCqObracM80IrzgnEC2pMqFujuxT27ZyL+1fgp6O5esWBJKkZ8OEkqFVeru58YqUgDJD4Q0ao8qA7HdZDJU9M3+2dbWJ6yfGASRCEp5GFN1NyBc90j/rAkFQ5LUjHCklQwjpYnpcELx7x8vLTW0aHhySxYtFB5UmPGjEt0U5x/7HXOMgyWJGiZo5AUY1CVv61M+7An8DhSlqSywJJUjLAkFYyjTVJgz+YW1fXiazMabJvLDpt/+ctfZP/7BxRhsNsiuyqyul8jb5JymGjdjDUyf3D2bUUsSYXDklSMsCQVjLZAUmB2n9mypTn9ow8YKS8/83Iya66Y7oagzPyieFJ199e5H/eke+kui/CBJalwWJKKEZakgnH0SSpxjh0Ixr8wXv3W4LoDB99X8jFIjuF6kS9JbZz3nlTdU52TPViSCoclqRhhSSoYbcWT4oXjflf0U7tiZno2qeu90+j5khRbseidDvRYVxAsSYXDklSMsCQVjLZCUoDZNtYu5QNNUl7yCkLTn3J/28CSVDgsScUIS1LBOFok5UcqyMFyhHwQ6kl5brFpyWaZ+dYMN+bAK4InbkkqHJakYoQlqWC0JU8KjH9uvLTm8SHOIJLyI8Fhtw5TK8xzhSWpcFiSihGWpIJxNEnKj0ia65fKrHdyf18rN0+qVXau2ykDrh6Y8fmiMFiSCoclqRhhSSoYR9uT8hIVCy27f7G7HPzAj0wy88l14HzZiHdl4dAFGV26dKTnb0kqHJakYoQlqWC0he6el6hGPjpS1s9c68bCkStJje86NoD4gmFJKhyWpGKEJalgtKUxKUVWzj8WdbK40/R6Bg8e7P5KRy4kxRqrEY+MkMOth3y7mEGwJBUOS1IxwpJUMNrawDnAQEc9PcqNifq00fHHH+/G0pELSa0av1Imvzg5bzksSYXDklSMsCQVjLZIUqTn1ZVD+xINjM9s8XWYqGNSFXcOV8sP8oUlqXB86EnKdLstSQXjWCWpWW/NkoXlC9wjojaJ80M2kjrQsl9Kf1qS16yehiWpcHxoSQoDRAAzsEWo91icgU+TU1l+5woNGDLfNvM7F0dYunSpeqnW71wcgX2ZqDC/c1EDhKB/8znxMN2baQnaPrau2iqlPx+SPA5J6d86kJb92fVvP9vavHSTTH5tcsbxXAIb7K1cudL3XCFBl3nBggXqo7Le83EFvoqk33ksRmBbbv766b3QgNzLli3zPVdoQP+0W+rX71yH6dOnq0/58FcHDNmMxx34njyNEa8h7sCnvysrK33PxRH44GhNTY3vuTgCm8hRBj5OUQwdBeme+5lxunRdunRJC13/9oLUVifKzvbDZnodbrnllrT4iMaGtHj5gLJkHrkEUy70wh7h5vm4AjrBbvgkmo570xQahg4dGnu+Zn7Umd/xOAL5QbJ+7TmOAMES+I1HaJ6zY1J54ljp7qFD9vrW4Re33Cq//clvkivETz75JPXXi/DuXqv6Ig0LOfOBHorYsWOH7e6FoD1293Td5jQmZaK9kxTGViwci2NSGmxOxxdlQJQxKfVl4htK0zbTywd2TCoceB0a+SztyAXFIimNrCTlLZD1pIJxJEiKXTCLhWgk1apsZNf6XdLUkaUIrZFIasOc9VJ7f257R/mhmCRF+awnFQzq7EiTlOalUE8qbjbWoO8Zd946PwprfncvbhSLpLT8jMG0VU+KjzP0/WFfKSkpUfud87VcL8JIanKPSbJ81HI3lr99WZIKhyapuNsW0J5UMfIGfMA31JPywnpSwWiP3T3TsEySimJww39dEbrGKYikDn/QKhW/qZD39/t/+DMMWs723t0bNWqUHZMKgPak/GzSklSeOJbHpDCgBWULZUbvqe6RTASRFFPJ+e5N5YUdkwrHh4Gk/GBJKk8ciyRlPt1atu2Suj/UBuYRRFLspjDlpWByywWWpMJhSSpGWJIKRlv2pDRqHZLCaP3gR1KQ3Lq562XBkPnukWiwJBUOS1IxwpJUMNouSaWu4eMJfKjBD0Ge1Lhnx8na6blt9xIES1LhsCQVIyxJBaM9eFLTX58WuNYpiKR6XdxL9mze68Yc5D9mb0kqCyxJxQhLUsFoDyT1bkOzLK5ydOxDNH4kxXhU1892dX4l7qvGuCxJxQ5LUjHCklQw2gNJbVy4UWruq3Fj6fCSVKvDRpvmb1Tbs2gofrIkFTssScUIS1LBaHMkBZl4CGXvzn3y8nmv+Obj50ktqlyU2M+8QFiSCoclqRhhSSoYbduTSlxHd+2Nb/aUvVv2qLgJP5Ka9OoUadna4saiw5JUOCxJxQhLUsFoD909wDIEv48z+JHU+L+OdX8VBktS4bAkFSMsSQWjvZDUwuHzZHFF5m4TfiQ16qkm91dhsCQVDktSMcKSVDDaKkmZq87Bns0tMvmVSW4shUySapWmRxOvwxw21lpFgSWpcFiSihGWpILRXjwpKGtcl8xunJekWE/F56uAl+jyhSWpcFiSihGWpILRHkhKk81o4zNXGl6S2jBrnUzqlulxRaErS1LhsCQVIyxJBaOtkZQmpDQvyP058vHGxA8DXpKa3mu6LKmMpz4sSYXDklSMsCQVjDbpSQW4PQ0PNri/UvCSFIs+c/1EezZYkgqHJakYYUkqGG2PpNLTmoPfIx8fIft2pW917CWpNy56w0ljvLPnwnb34oclqRhhSSoY7WLg3GWYmb1nSvPI5kTEhUlSDJq/+Z3ebqxwWJIKhyWpGGFJKhhtmaS8s3PNtc1q33INzpskxYcbht+VemevUFiSCoclqRhhSSoY7cKTcrFx3ntScVelG0vk+WTHFEltXrpFLVOAvLwEFwWWpMJhSSpGWJIKRlsjqTBq2bt9r/R2u3M6nelJrZuxTuYNWhBp/MkPlqTCYUkqRliSCkZ78qTIp+c3X03u0gkZmSS1csxKWT11tRsrHJakwmFJKkZYkgpGWycpGtkJJ5ygAoY78L8Hyp7tu92z6SS1oGy+bF++zY2lELXrZ0kqHJakYoQlqWC0dZK68MIL3V8iXbp0kYaH6mT7qm1J4jFJioWc29ftcGOFw5JUOCxJxYj2TFLLli37UJFUvl6NSUL333+/mt17b8F77hGRjh2fdH85jfKZMepF5CQKHJxq
7yQ1ZswYS1IBaHMkNW7cOPVZZQSLO2zevFnmzJnje66QoOVdsGCBIirv+bhCfX29KoPfuTgCDSUu3f/ud7+TecPnyrsTm91ju+Sxxx5Lnq9+vE62bNiajBP27NmTFs8lIC/X8XBYunSp+h0ln2wBu1+zZk3RbJMHEETrdy6OMGnSJN/jcQTkPmokNW/ePPEGnrZ+xwsJ8+fPT/6urq5Wri8NJu7Q1NQkNTU1vufiCJBIQ0OD+j127NiM84WGiooKVQa/c3GEqqqq2HT/q1/9SuqG1UpNaVVSF7fddpv6S3zQ8wOlsbExNj2hF617Qtz6x26QV8fjzp+6LZbdE2hXfsfjCjgXtN+5c+cm23JcYebMmSr4neuwf/9+McOBAwdUYu/xOAOEtXfv3tgCT1Uz3tzcnBaPM/BE4Wnrdy6OMHXqVN/jcQS6kXiZfud0IA1/aayf+tSn0sIll1ySTHfmmWcqj2/90vUyY+DM5HE8Kf17wE8GyK6WnRn1EyWQBx4O3T2/83EEyrNx40bfc3EEPDW/44UGrV+GObzn4gp4OqtXr/Ztz3GEbdu2yaZNm3zPHZHunnfcI+4xI2/+xRy3YEwBZRYLPCCKCcZdCkWvXr2S42asKp/6WmosRI9ZHTzwvvS7qq/6HRfQPSRSLECCPISKBYYKigmGITSizqAGgXHMYo7Fhnb3+M9boGKPSRVzYBu0J5Ly6v5IkFS+BmymxxPr3Lmz+s0YRcum3TLh+QkqTqqOTyZIauuKbTL81xWJg0kUNlliSSocy5cvj52cNI46SWnoArZHkjIrp715Uqbsbd2TYgnC66+/rsJ3v/tdteq88bFGVQZKoT2plRNX+W6KVwg+TCRVDDKBpIqFNkNSGu2NpLwVrkmqGIagSaoYeYMjTVL5lqOkpES6d++eDAda9kvl3VVq7OCpZ5+Si394kWosC8sXqc+xxwkvScVdBx8GT6pYKCZJUY9ekjLr1pekcOmLCdvdC0axSSpu3TP2NORnQ2TW/Nny8ac/LsdVHyc33n6jTOs51fdrMoXAJKk4CUrnZUkqGB96T8prUJak0mHq50h6UnE0dBb5DfhRf6kfXS/H1X1EOuzqIGede5Y0dRwl62fGa9ReTypuWJIKxpH2pFIQ+f8KHS1QZpO/nQAAAABJRU5ErkJgguiPgeS8mOe9kQ==
在同一直角坐标系中做出其函数图象和g(x)=ln|x|图象,由图可知有2个交点. 故选:B.
【点评】本题考查了数形结合的数学思想,数形结合的应用大致分两类:一是以形解数,即借助数的精确性,深刻性来讲述形的某些属性;二是以形辅数,即借助与形的直观性,形象性来揭示数之间的某种关系,用形作为探究解题途径,获得问题结果的重要工具
11.已知点P是双曲线焦点,且( ) A.
B.
C.2 ?
﹣
=1(a>0,b>0)左支上一点,F1,F2是双曲线的左右两个
=0,线段PF2的垂直平分线恰好是该双曲线的一条渐近线,则离心率为
D.
【考点】双曲线的简单性质.
【专题】计算题;圆锥曲线的定义、性质与方程.
【分析】在三角形F1F2P中,点N恰好平分线段PF2,点O恰好平分线段F1F2,根据三角形的中位线定理得出ON∥PF1,从而得到∠PF1F2正切值,可设PF2=bt.PF1=at,再根据双曲线的定义可知|PF2|﹣|PF1|=2a,进而根据勾股定理建立等式求得a和b的关系,则离心率可得.
【解答】解:在三角形F1F2P中,点N恰好平分线段PF2,点O恰好平分线段F1F2, ∴ON∥PF1,又ON的斜率为,
∴tan∠PF1F2=,
在三角形F1F2P中,设PF2=bt.PF1=at,
根据双曲线的定义可知|PF2|﹣|PF1|=2a,∴bt﹣at=2a,①
22222222
在直角三角形F1F2P中,|PF2|+|PF1|=4c,∴bt+at=4c,②
由①②消去t,得,
又c=a+b, 22
∴a=(b﹣a),即b=2a,
∴双曲线的离心率是=, 故选:D.
【点评】本题主要考查了双曲线的简单性质,考查了学生对双曲线定义和基本知识的掌握,属于中档题.
12.如图,在长方形ABCD中,AB=
,BC=1,E为线段DC上一动点,现将△AED沿
222
AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨
迹的长度为( )
A. B. C. D. 【考点】轨迹方程.
【专题】综合题;空间位置关系与距离.
【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K,则D'KA=90°,得到K点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.
【解答】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K为垂足,由翻折的特征知,连接D'K,
则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是, 如图当E与C重合时,AK==,
取O为AD′的中点,得到△OAK是正三角形. 故∠K0A=
,∴∠K0D'=
=
, ,
其所对的弧长为故选:D.
【点评】本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点K的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变.本题是一个中档题目.
二、填空题(本题共4个小题,每小题5分,共20分.把每小题的答案填在答题纸的相应位置)
13.设变量x,y满足约束条件
,则目标函数z=2x+3y+1的最大值为10.
【考点】简单线性规划.
【专题】计算题;不等式的解法及应用.
【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+3y+1对应的直线进行平移,由此可得当x=3,y=﹣1时,目标函数取得最大值为10.
【解答】解:作出不等式组表示的平面区域,
得到如图的△ABC及其内部,其中A(3,1),B(0,﹣2),C(0,2)
设z=F(x,y)=2x+3y+1,将直线l:z=2x+3y+1进行平移, 当l经过点A(3,1)时,目标函数z达到最大值
∴z最大值=F(3,1)=10 故答案为:10
【点评】本题给出二元一次不等式组,求目标函数z=2x+3y+1的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
14.已知函数f(x)=
【考点】定积分.
【分析】根据微积分基本定理求出即可.
,则f(x)dx=.
【解答】解:∵根据定积分的几何意义,∴
=
就等于单位圆的面积的四分之一,
又∴
f(x)dx=
=
+
=,
=
.
故答案为:.
【点评】本题主要考查了微积分基本定理和定积分的几何意义,属于基础题.
15.设(5x﹣)的展开式的各项系数和为M,二项式系数和为N,若M﹣N=240,则展开式中x的系数为150.
【考点】二项式定理的应用. 【专题】计算题.
n
【分析】根据M﹣N=240,解得 2 的值,可得 n=4.再求出(5x﹣)的展开式的通项公式,令x的幂指数等于1,求得r的值,即可求得展开式中x的系数.
【解答】解:由于(5x﹣)的展开式的各项系数和M与变量x无关,故令x=1,即可
nn
得到展开式的各项系数和M=(5﹣1)=4.
nnn2nn
再由二项式系数和为N=2,且M﹣N=240,可得 4﹣2=240,即 2﹣2﹣240=0.
nn
解得 2=16,或 2=﹣15(舍去),∴n=4.
n
4﹣r
r
r
4
n
nn
(5x﹣
)的展开式的通项公式为 Tr+1=
?(5x)?(﹣1)?=(﹣1)??5
﹣r
?.
r
4﹣r
令4﹣=1,解得 r=2,∴展开式中x的系数为 (﹣1)??5=1×6×25=150, 故答案为 150?
【点评】本题主要考查二项式的各项系数和与二项式系数和的关系,二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.
16.数列{an}满足a1=1,且对任意的正整数m,n都有am+n=am+an+mn,则
=.
【考点】数列递推式;数列的求和. 【专题】等差数列与等比数列.
【分析】先令n=1找递推关系并求通项公式,再利用通项的特征求和,即可得到结论. 【解答】解:令n=1,得an+1=a1+an+n=1+an+n,∴an+1﹣an=n+1
用叠加法:an=a1+(a2﹣a1)+…+(an﹣an﹣1)=1+2+…+n=