8.3 同底数幂的除法(2)
自主学习 问题一:(1) 完成下列填空:16=2 ;8=2;4=2
3
3
0
4
3
( )
;2=2
( )
;1=2
3
3
( )
. =2
( )
(2) 已知2÷2=8÷8=1;如果用同底数幂除法法则,则2÷2=2
3-3
.
结论:当a≠0时,a= .用文字叙述: 的数的零次幂等于 . 问题二:根据乘方和除法的意义计算:2÷2=除法法则计算:2÷2=2
3
4
( )
3
4
2?2?2=( );如果用同底数幂的
2?2?2?21
=2
( )
;所以可以规定:2=( );
n
结论: 当a≠0,n是正整数时,a= .用文字叙述: 的数的
11?
n次幂等于 .如:3=2=.
39?b?问题三:1.当a≠0,b≠0,n是正整数时,???a??3?n?a?=??.也就是说:一个分数的?n次?b?3n38?3??2?2幂等于这个分数的倒数的n次幂. 如:??=??=3=
23273????2.下列的式子是否正确?如有错误,请改正. (1) 1?0; (2) 2 (3)10改正:
?20?3??8;
??20; (4) a2n?a2n?a(a≠0,n是正整数).
100
)= ;π= . 2222.(1)?3??9 (2)(?3)?9
问题四:填空:1. (2)= ;(
0
(3)?3?211??()2= (4)(?3)?2?(?)2= 33?3?1?(5)????2??3?(7)????2? = (6)?2?1?????2??3?3= =
?2?= (8)????3?我的收获与疑惑 18
8.3 同底数幂的除法(3)
自主学习 问题一: 10=0.1;10
1
?
= 0.01;10
?
= ;10
?
= ;你发现
什么规律? 问题二: 阅读课本第49页例2.
注意:3.14×0.1=0.314,3.14×0.01=0.0314,3.14×0.001=0.00314,3.14×0.0001=0.000314,3.14×0.00001=0.0000314. 按照这个规律,请直接写出:3.14×0.00000001=
问题三:1.一个很小的正数可以写成1个正整数与10的负整数指数幂的积的形式吗?
2.太阳的半径为700 000 000m 用科学计数法可以写成7?10,太阳的主要成分是氢,而氢原子的半径大约只有0.000 000 000 05m,类似的可以写成 。
我们得到结论,一个正数利用科学记数法可以写成a×10的形式,其中1≤a<10,n是整数。
问题四:1. 人体中的红细胞的直径约为0.000 007 7m,而流感病毒的直径约为
0.000 000 08m,用科学记数法表示这两个量
2.在显微镜下,一种细胞的截面积可以近似的看成圆,它的半径为7.80×10m,试求这种细胞的截面面积(π≈3.14)
问题五:1.有一句谚语说:“捡了芝麻,丢了西瓜。”意思是说有些人办事只抓一些无关紧要的小事,却忽略了具有重大意义的大事。据测算,5万粒芝麻才200克,你能换算出1粒芝麻有多少克吗?可别“占小便宜吃大亏”噢!(把你的结果用科学记数法表示)
2.滴水穿石的故事大家都听过吧?现在测量出:水珠不断地滴在一块石头上,经过40年,石头上形成了一个深为4×10m的小洞,问平均每个月小洞的深度增加多少(单位:m ,用科学计数法表示)?
19
-2
-7
n
8 数学阅读 基 因 基因是决定一个生物物种的所有生命现象的遗传因子。植物的高矮、果实的大小、动物的体形、动物的食性等主要是由基因控制的。 不同生物的基因个数往往不同。例如,人的基因约有3.0?10个;线虫有1.9?10个左右;真菌有6?10个左右;结核病菌有4?10个左右。 DNA是每一个生物携带自身基因的载体,它是遗传 物质脱氧核糖核酸的英文简称。DNA分子的直径只有 33442?10?7cm, DNA分子像一架向右盘旋的螺旋形梯子 (如下图),。生物的遗传信息大多储存在DNA分子上。 数学实验 生活中的“较大数”与“较小数”
活动一
1. 估测自己的步长;
2.估计你1h大约走多少步?它可以绕我们的操场多少圈(一圈400米)? 3.走 (一百万)步要多少小时?
4.从上海到北京约1 400km,如果从上海出发步行到北京,大约要走多少小时? 活动二
1. 测量数学课本的厚度; 2.估算数学课本一张纸的厚度;
3.估计100万册这样的数学课本摞在一起有多高?能与珠穆朗玛峰(8844.43m)比高吗? 活动三
1.测量教室的面积;
2.10m的面积相当于多少间教室的面积?
3.根据你班的学生数,估计这么多间教室可供多少学生上课?
请你通过各种方式收集生活中的“较大数”与“较小数”3个以上,用你熟悉的事物来描述,并与同学交流。
62我的收获与疑惑
20
第九章 从面积到乘法公式 9.1 单项式乘单项式
自主学习 问题一:将几台型号相同的电视机叠放在一起组成“电视墙”,计算图中这块“电视墙”的面积。 ① 你能用图形的面积说明3a?3b等于多少吗?
② 3a?3b用运算律又可怎样计算呢?
下列各式如何计算?请你边做边想每一步的计算依据。 (1)2ab?3ab (2) 4ab?5b (3) 6x?(?2xy) 问题二: 1.填空:
(1)(2.判断正误: (1)3x??2x
(4)?3x?2xy?6xy (5)3ab?3ab?9ab
3.计算:(1)?(x)?(2xy); (2)(a)?(?2ab);
(3)(?x)?2x?(?5x); (4)(2x)?(?3xy)
问题三:你觉得在进行单项式乘单项式运算时需注意些什么?和同伴交流一下吧!
21
23232222322232)?(?3xy)??12x2y (2)2ab?()??6a2bc
3393?2??5x25 (2)3a?4a?12a (3)3b?8b?24b
2222222 数学阅读 数学趣联
宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:\我出一联,你们若对得上,我就让你们进考场.\考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.
苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.
考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.
我的收获与疑惑 22

