清远市2024年中考数学10份word文档合集可编辑模拟试题(2)

2025-11-13

由2x>3(x-2)+5,解得:2a-3<x≤1, 由关于x的不等式组解得-2≤2a-3<-1, 解得≤a<1, 故选:A.

点睛:本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键. 12. 如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( ).

仅有三个整数:

A. 1个 B. 2个 C. 3个 D. 4个 【答案】D

【解析】分析:如图延长EF交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG 得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;

详解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.

∵CD=2AD,DF=FC, ∴CF=CB, ∴∠CFB=∠CBF, ∵CD∥AB, ∴∠CFB=∠FBH, ∴∠CBF=∠FBH,

∴∠ABC=2∠ABF.故①正确, ∵DE∥CG, ∴∠D=∠FCG,

∵DF=FC,∠DFE=∠CFG, ∴△DFE≌△FCG, ∴FE=FG, ∵BE⊥AD, ∴∠AEB=90°, ∵AD∥BC,

∴∠AEB=∠EBG=90°, ∴BF=EF=FG,故②正确, ∵S△DFE=S△CFG,

∴S四边形DEBC=S△EBG=2S△BEF,故③正确, ∵AH=HB,DF=CF,AB=CD, ∴CF=BH,∵CF∥BH, ∴四边形BCFH是平行四边形, ∵CF=BC,

∴四边形BCFH是菱形, ∴∠BFC=∠BFH,

∵FE=FB,FH∥AD,BE⊥AD, ∴FH⊥BE,

∴∠BFH=∠EFH=∠DEF, ∴∠EFC=3∠DEF,故④正确, 故选:D.

点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题. 二、填空题

13. 分解因式:x-9x=________ . 【答案】x(x+3)(x-3)

【解析】试题解析:原式=x(x2﹣9) =x(x+3)(x﹣3)

考点:提公因式法与公式法的综合运用.

3

14. 已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________. 【答案】y1>y2

【解析】分析:直接利用一次函数的性质分析得出答案. 详解:∵直线经过第一、二、四象限, ∴y随x的增大而减小, ∵x1<x2,

∴y1与y2的大小关系为:y1>y2. 故答案为:>.

点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.

15. 已知关于x的分式方程【答案】k<6且k≠3

【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:

有一个正数解,则k的取值范围为________.

方程两边都乘以(x-3),得 x=2(x-3)+k, 解得x=6-k≠3, 关于x的方程程∴x=6-k>0, k<6,且k≠3,

∴k的取值范围是k<6且k≠3. 故答案为:k<6且k≠3.

点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.

16. 如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.

有一个正数解,

【答案】

【解析】分析:先根据等腰直角三角形的性质得到∠BAC=45°,AB=

AC=2

,再根据旋转

的性质得∠BAB′=∠CAC′=45°,则点B′、C、A共线,然后根据扇形门口计算,利用线段BC在上述旋转过程中所扫过部分(阴影部分)的面积=S扇形BAB′-S扇形CAC′进行计算即可. 详解:∵△ABC是等腰直角三角形, ∴∠BAC=45°,AB=

AC=2

∵△ABC绕点A按顺时针方向旋转45°后得到△AB′C, ∴∠BAB′=∠CAC′=45°, ∴点B′、C、A共线,

∴线段BC在上述旋转过程中所扫过部分(阴影部分)的面积=S扇形BAB′+S△AB′C-S扇形CAC′-S△ABC =S扇形BAB′-S扇形CAC′ =

故答案为.

点睛:本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了等腰直角三角形的性质和旋转的性质.

17. 如图,在边长为1的小正方形格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.

【答案】2

【解析】分析:首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案. 详解:如图,连接BE,

∵四边形BCEK是正方形,

∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK, ∴BF=CF,

根据题意得:AC∥BK, ∴△ACO∽△BKO, ∴KO:CO=BK:AC=1:3, ∴KO:KF=1:2, ∴KO=OF=CF=BF, 在Rt△PBF中,tan∠BOF=∵∠AOD=∠BOF, ∴tan∠AOD=2. 故答案为:2

点睛:此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.

18. 如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(-10,0),对角线AC和OB相交于点D且AC·OB=160.若反比例函数y= (x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE∶S△OAB=________ .

=2,

【答案】1:5

【解析】分析:作CG⊥AO,BH⊥AO,根据菱形和三角形的面积公式可得S△OAC=S菱形=40,从而得OA=10,CG=8,在Rt△OGE中,根据勾股定理得OG=6,AG=4,即C(-6,8),根据全等三角形的性质和中点坐标公式可得B(-16,8),D(-8,4),将D代入反比例函数解析式可得k,


清远市2024年中考数学10份word文档合集可编辑模拟试题(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:图解农村别墅施工要点(全图 预算 配筋表)

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219