大学物理学第四版课后习题答案(赵近芳)上册(6)

2025-06-26

∴ Fr??N???又∵I?l1?l2F l11mR2, 2∴ ???以F?100N等代入上式,得

FrR?2?(l1?l2)?F① ImRl1???2?0.40?(0.50?0.75)40?100??rad?s?2

60?0.25?0.503由此可算出自施加制动闸开始到飞轮停止转动的时间为

t??这段时间内飞轮的角位移为

?0900?2??3??7.06s ?60?40???0t??t2?1900?2?91409?????(?)2 2604234?53.1?2?rad可知在这段时间里,飞轮转了53.1转. (2)?0?900?2?rad?s?1,要求飞轮转速在t?2s内减少一半,可知 60?0??2??0t???02t??15?rad?s?2 2用上面式(1)所示的关系,可求出所需的制动力为

F???mRl1?2?(l1?l2)60?0.25?0.50?15?

2?0.40?(0.50?0.75)?2?177N

3.12 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO?转动.设大小圆柱体的半径分别为R和r,质量分别为M和m.绕在两柱体上的细绳分别与物体m1和m2相连,

m1和m2则挂在圆柱体的两侧,如题3.12图所示.设R=0.20m,r=0.10m,m=4 kg,M=10 kg,m1=m2=2 kg,且开始时m1,m2离地均为h=2m.求: (1)柱体转动时的角加速度; (2)两侧细绳的张力.

解: 设a1,a2和β分别为m1,m2和柱体的加速度及角加速度,方向如图(如图b).

题3.12(a)图 题3.12(b)图

(1) m1,m2和柱体的运动方程如下:

T2?m2g?m2a2 ① m1g?T1?m1a1 ②

??T1R?T2r?I? ③

式中 T1??T1,T2??T2,a2?r?,a1?R? 而 I?由上式求得

11MR2?mr2 22???Rm1?rm2g22I?m1R?m2r0.2?2?0.1?2?9.8

11?10?0.202??4?0.102?2?0.202?2?0.10222?6.13rad?s?2 (2)由①式

T2?m2r??m2g?2?0.10?6.13?2?9.8?20.8N

由②式

T1?m1g?m1R??2?9.8?2?0.2.?6.13?17.1N

3.13计算题3.13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M,半径为r,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设m1=50kg,m2=200kg,M=15kg, r=0.1m

解: 分别以m1,m2滑轮为研究对象,受力图如图(b)所示.对m1,m2运用牛顿定律,有

m2g?T2?m2a① T1?m1a ②

对滑轮运用转动定律,有

1T2r?T1r?(Mr2)?③

2又,a?r?④ 联立以上4个方程,得

a?m2gm1?m2?M2?200?9.8?7.6155?200?2m?s?2

题3.13(a)图题3.13(b)图

3.14 如题3.14图所示,一匀质细杆质量为m,长为l,可绕过一端O的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过?角时的角速度.

题3.14图

解: (1)由转动定律,有

11mgl?(ml2)?

23∴??3g 2l(2)由机械能守恒定律,有

mgl11sin??(ml2)?2 223∴ ??3gsin? l

3.15 如题3.15图所示,质量为M,长为l的均匀直棒,可绕垂直于棒一端的水平轴O无摩擦地转动,它原来静止在平衡位置上.现有一质量为m的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度??2930°处. (1)设这碰撞为弹性碰撞,试计算小球初速v0的值; (2)相撞时小球受到多大的冲量?

题3.15图

解: (1)设小球的初速度为v0,棒经小球碰撞后得到的初角速度为?,而小球的速度变为v,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:

mv0l?I??mvl①

121212mv0?I??mv② 222上两式中I?12Ml,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直3位置上摆到最大角度??30o,按机械能守恒定律可列式:

12lI??Mg(1?cos30?) ③ 22由③式得

1212???(1?cos30?)???(1?)?

2??I??l由①式

?Mgl??3g3?v?v0?由②式

I? ④ mlI?2v?v?⑤

m220所以

(v0?求得

I?2I2)?v0??2 mlmv0??(2)相碰时小球受到的冲量为

l?Il1M(1?2)?(1?)?2ml23m6(2?3)gl3m?M12m

?Fdt??(mv)?mv?mv由①式求得

0?Fdt?mv?mv0????I?1??Ml? l36(2?3)glM

6负号说明所受冲量的方向与初速度方向相反.

3.16 一个质量为M、半径为R并以角速度?转动着的飞轮30(可看作匀质圆盘),在某一瞬时突然有一片质量为m的碎片从轮的边缘上飞出,见题3.16图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. (1)问它能升高多少?

(2)求余下部分的角速度、角动量和转动动能.

题3.16图

解: (1)碎片离盘瞬时的线速度即是它上升的初速度

v0?R?

设碎片上升高度h时的速度为v,则有

2v2?v0?2gh

令v?0,可求出上升最大高度为

2v0122H??R?

2g2g(2)圆盘的转动惯量I?11MR2,碎片抛出后圆盘的转动惯量I??MR2?mR2,碎片脱22离前,盘的角动量为I?,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系

统的总角动量,碎片与破盘的总角动量应守恒,即

I??I????mv0R

式中??为破盘的角速度.于是


大学物理学第四版课后习题答案(赵近芳)上册(6).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:度米文库汇编之年度员工培训工作计划[1]

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219