高中数学知识点总结(3)

2025-08-10

(1)振幅|A|,周期T?2? |?| 若f?x0???A,则x?x0为对称轴。

若f?x0??0,则x0,0为对称点,反之也对。 (2)五点作图:令?x??依次为0,(x,y)作图象。

(3)根据图象求解析式。(求A、?、?值)

???3?,?,,2?,求出x与y,依点 22

??(x1)???0? 如图列出??

?(x)???2?2? 解条件组求?、?值

?正切型函数y?Atan??x???,T?? |?| 27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。 如:cos?x? (∵??x?????23???,x???,?,求x值。 ???6?22??3?7??5??5?13,∴?x??,∴x??,∴x??) 26636412

28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗? 如:函数y?sinx?sin|x|的值域是 (x?0时,y?2sinx??2,2,x?0时,y?0,∴y??2,2) 29. 熟练掌握三角函数图象变换了吗?

(平移变换、伸缩变换) 平移公式:

??????x'?x?ha?(h,k) (1)点P(x,y)????? ??P'(x',y'),则?平移至?y'?y?k

(2)曲线f(x,y)?0沿向量a?(h,k)平移后的方程为f(x?h,y?k)?0 如:函数y?2sin?2x?图象?

(y?2sin?2x????????1的图象经过怎样的变换才能得到y?sinx的 4???????1???横坐标伸长到原来的2倍??y?2sin?2?x????1 ??1?????????4???2?4?????1个单位4?2sin?x???1????????y?2sinx?1?上平移???????y?2sinx ??4左平移个单位12?y?sinx) ??????????纵坐标缩短到原来的倍 30. 熟练掌握同角三角函数关系和诱导公式了吗?

如:1?sin??cos??sec??tan??tan?·cot??cos?·sec??tan2222? 4??cos0???称为1的代换。 2? “k·??”化为?的三角函数——“奇变,偶不变,符号看象限”,

2?sin“奇”、“偶”指k取奇、偶数。 如:cos9??7???tan????sin?21????6?4sin??tan?,则y的值为cos??cot?

B. 负值

C. 非负值

又如:函数y? A. 正值或负值

D. 正值

sin?sin2??cos??1?cos? (y???0,∵??0)

cos?cos2??sin??1?cos??sin?sin?? 31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系:

?cos??cos?sin??????sin2??2sin?cos? sin??????sin令???

令???2co?s?????cos?co?s?sin?sin??????cos2??co2s??sin? tan??????tan??tan?22 ?2cos??1?1?2sin?? 1?tan?·tan?1?cos2?2 1?cos2?2sin??2co2s??tan2??

2tan? 21?tan?

??bcos?? asin sin??cos??a2?b2sin?????,tan??b a???2sin????

?4?????? 3? sin??3cos??2sin??? 应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。) 具体方法:

(1)角的变换:如?????????,????????????????????? ??22??2 (2)名的变换:化弦或化切

(3)次数的变换:升、降幂公式

(4)形的变换:统一函数形式,注意运用代数运算。

sin?cos?2?1,tan???????,求tan???2??的值。

1?cos2?3sin?cos?cos?1??1,∴tan?? (由已知得: 22sin?22sin?2 又tan??????

321?tan?????tan??1 ∴tan?32?) ???2???tan????????1?tan?1?2·18?????·tan32 如:已知?? 32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

b2?c2?a2 余弦定理:a?b?c?2bccosA?cosA?

2bc222 (应用:已知两边一夹角求第三边;已知三边求角。)

?a?2RsinAabc? 正弦定理:???2R??b?2RsinB

sinAsinBsinC?c?2RsinC?

S??1a·bsinC 2 ∵A?B?C??,∴A?B???C

C,sin ∴sin?A?B??sin 如?ABC中,2sin (1)求角C;

2A?BC?cos 22A?B?cos2C?1 2c2,求cos2A?cos2B的值。 (2)若a?b?222 ((1)由已知式得:1?cos?A?B??2cos2C?1?1 又A?B???C,∴2cosC?cosC?1?0

21或cosC??1(舍) 2? 又0?C??,∴C?

31222 (2)由正弦定理及a?b?c得:

232222? 2sinA?2sinB?sinC?sin? 3432A?1?cos2B? 1?cos43 ∴cos2A?cos2B??)

4 ∴cosC? 33. 用反三角函数表示角时要注意角的范围。 反正弦:arcsinx???????,?,x???1,1? 22?? 反余弦:arccosx?0,?,x??1,1 反正切:arctanx???????????,?,?x?R? ?22? 34. 不等式的性质有哪些? (1)a?b,c?0?ac?bcc?0?ac?bc

(2)a?b,c?d?a?c?b?d (3)a?b?0,c?d?0?ac?bd

(4)a?b?0?1111?,a?b?0?? abab (5)a?b?0?an?bn,na?nb

(6)|x|?a?a?0???a?x?a,|x|?a?x??a或x?a 如:若11??0,则下列结论不正确的是(ab)

A.a2?b2 C.|a|?|b|?|a?b| 答案:C

35. 利用均值不等式:

B.ab?b2

D.ab??2 ba?a?b? a2?b2?2aba,b?R?;a?b?2ab;ab???求最值时,你是否注

?2???2意到“a,b?R?”且“等号成立”时的条件,积(ab)或和(a?b)其中之一为定

值?(一正、二定、三相等) 注意如下结论:

a2?b2a?b2ab??ab?a,b?R? 22a?b?? 当且仅当a?b时等号成立。 a?b?c?ab?bc?caa,b?R 当且仅当a?b?c时取等号。 a?b?0,m?0,n?0,则

222??bb?ma?na??1?? aa?mb?nb4 如:若x?0,2?3x?的最大值为x

(设y?2??3x?

??4???2?212?2?43 x? 当且仅当3x?423,又x?0,∴x?时,ymax?2?43) x3

又如:x?2y?1,则2x?4y的最小值为 (∵2x?22y?22x?2y?221,∴最小值为22)


高中数学知识点总结(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:渣油加氢装置实现长周期运行的措施及应用

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219