第10页(共28页)
∴∠OAC=∠BAD, 在△AOC和△ABD中,∴△AOC≌△ABD, ∴∠ABD=∠AOC=60°,
∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB, ∴BD∥OA,
,
②当点C在OB的延长线上时,如图2, 同①的方法得出OA∥BD, ∵△ACD是等边三角形, ∴AC=AD,∠CAD=60°, ∴∠OAC=∠BAD, 在△AOC和△ABD中,∴△AOC≌△ABD, ∴∠ABD=∠AOC=60°,
∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB, ∴BD∥OA, 故选:A.
,
第11页(共28页)
【点评】此题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.
10.(3.00分)(2018?玉林)如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于( )
A. B.2 C.4 D.3
【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2
.
【解答】解:点C在双曲线y=上,AC∥y轴,BC∥x轴, 设C(a,),则B(3a,),A(a,), ∵AC=BC, ∴﹣=3a﹣a,
解得a=1,(负值已舍去)
∴C(1,1),B(3,1),A(1,3), ∴AC=BC=2, ∴Rt△ABC中,AB=2故选:B.
【点评】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
11.(3.00分)(2018?玉林)圆锥的主视图与左视图都是边长为4的等边三角形,
第12页(共28页)
,
则圆锥的侧面展开图扇形的圆心角是( ) A.90° B.120° C.150° D.180°
【分析】由圆锥的主视图为等边三角形知圆锥的底面圆直径为4、侧面展开图扇形的半径为4,据此利用弧长公式求解可得.
【解答】解:∵圆锥的主视图与左视图都是边长为4的等边三角形, ∴圆锥的母线长为4、底面圆的直径为4, 则圆锥的侧面展开图扇形的半径为4, 设圆锥的侧面展开图扇形的圆心角是n, 根据题意,得:解得:n=180°, 故选:D.
【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
12.(3.00分)(2018?玉林)如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是( )
=4π,
A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤12
【分析】首先证明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解决问题; 【解答】解:翻折后的抛物线的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,
第13页(共28页)
∵设x1,x2,x3均为正数,
∴点P1(x1,y1),P2(x2,y2)在第四象限, 根据对称性可知:x1+x2=8, ∵2≤x3≤4,
∴10≤x1+x2+x3≤12即10≤t≤12, 故选:D.
【点评】本题考查二次函数与x轴的交点,二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
二、填空题:本大题共6小题,每小题3分,共18分,把答案填在答题卡中的横线上。
13.(3.00分)(2018?玉林)计算:6﹣(3﹣5)= 8 . 【分析】直接利用去括号法则进而计算得出答案. 【解答】解:6﹣(3﹣5)=6﹣(﹣2)=8. 故答案为:8.
【点评】此题主要考查了有理数的加减法,正确去括号是解题关键.
14.(3.00分)(2018?玉林)五名工人每天生产零件数分别是:5,7,8,5,10,则这组数据的中位数是 7 .
【分析】根据将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案. 【解答】解:把数据从小到大排列:5,5,7,8,10, 中位数为7, 故答案为:7.
【点评】此题主要考查了中位数,关键是掌握中位数定义.
15.(3.00分)(2018?玉林)已知ab=a+b+1,则(a﹣1)(b﹣1)= 2 . 【分析】将ab=a+b+1代入原式=ab﹣a﹣b+1合并即可得. 【解答】解:当ab=a+b+1时,
第14页(共28页)
原式=ab﹣a﹣b+1 =a+b+1﹣a﹣b+1 =2,
故答案为:2.
【点评】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.
16.(3.00分)(2018?玉林)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是 10 cm.
【分析】先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.
【解答】解:如图,
记圆的圆心为O,连接OB,OC交AB于D, ∴OC⊥AB,BD=AB,
由图知,AB=16﹣4=12cm,CD=2cm,
∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r, 在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2, ∴r2=36+(r﹣2)2, ∴r=10cm, 故答案为10.
第15页(共28页)
【点评】此题主要考查了垂径定理的应用,勾股定理,构造出直角三角形是解本题的关键.
17.(3.00分)(2018?玉林)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是 2<AD<8 .
【分析】如图,延长BC交AD的延长线于E,作BF⊥AD于F.解直角三角形求出AE、AF即可判断;
【解答】解:如图,延长BC交AD的延长线于E,作BF⊥AD于F.
在Rt△ABE中,∵∠E=30°,AB=4, ∴AE=2AB=8,