∵m为正整数,且该方程的根都是整数, ∴m=2或3. ∴2+3=5. 故选:B.
【点评】本题考查了根的判别式以及一元二次方程的整数解,牢记“当△≥0时,方程有实数根”是解题的关键.
10.(3.00分)已知下列命题: ①若a3>b3,则a2>b2;
②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;
③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;
④周长相等的所有等腰直角三角形全等. 其中真命题的个数是( ) A.4个 B.3个 C.2个 D.1个
【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.
【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;
②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;
③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误; ④周长相等的所有等腰直角三角形全等,故正确. 故选:C.
【点评】本题主要考查了命题与定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣
x+1与x轴,y轴分
别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为( )
A. B. C. D.2
【分析】利用直线l1:y=﹣
x+1,即可得到A(2,0)B(0,1),AB==3,
过C作CD⊥OA于D,依据CD∥BO,可得OD=AO=,CD=BO=,进而得
到C(
,),代入直线l2:y=kx,可得k=
.
,
【解答】解:直线l1:y=﹣即A(2
,0)B(0,1),
x+1中,令x=0,则y=1,令y=0,则x=2
∴Rt△AOB中,AB=
如图,过C作CD⊥OA于D, ∵∠BOC=∠BCO, ∴CB=BO=1,AC=2, ∵CD∥BO, ∴OD=AO=即C(把C(=即k=
=3,
,CD=BO=,
,),
,)代入直线l2:y=kx,可得 k, ,
故选:B.
【点评】本题主要考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
12.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为( )
A. B. C. D.
【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.
【解答】解:如图,
在Rt△BDC中,BC=4,∠DBC=30°, ∴BD=2
,
连接DE,
∵∠BDC=90°,点D是BC中点, ∴DE=BE=CEBC=2, ∵∠DCB=30°, ∴∠BDE=∠DBC=30°, ∵BD平分∠ABC, ∴∠ABD=∠DBC, ∴∠ABD=∠BDE, ∴DE∥AB, ∴△DEF∽△BAF, ∴
,
,
在Rt△ABD中,∠ABD=30°,BD=2∴AB=3, ∴∴
, ,
=
,
∴DF=BD=×2故选:D.
【点评】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.
二、填空题:本大题共有8小题,每小题3分,共24分. 13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为 ﹣2 .
【分析】将两方程相加可得4a﹣4b=8,再两边都除以2得出a﹣b的值,继而由相反数定义或等式的性质即可得出答案. 【解答】解:由题意知①+②,得:4a﹣4b=8, 则a﹣b=2, ∴b﹣a=﹣2, 故答案为:﹣2.
【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.
14.(3.00分)不等式组
的非负整数解有 4 个. ,
【分析】首先正确解不等式组,根据它的解集写出其非负整数解. 【解答】解:解不等式2x+7>3(x+1),得:x<4, 解不等式x﹣
≤,得:x≤8,
则不等式组的解集为x<4,
所以该不等式组的非负整数解为0、1、2、3这4个, 故答案为:4.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣
4小于2的概率是 .
【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得. 【解答】解:列表如下:
﹣2 ﹣1 1 2 ﹣2 ﹣1 1 2 2 ﹣2 ﹣4 ﹣1 ﹣2 2 ﹣2 ﹣1 ﹣4 ﹣2 2 2 由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果, ∴积为大于﹣4小于2的概率为故答案为:.
【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
16.(3.00分)化简;
÷(
﹣1)= ﹣ .
=,
【分析】根据分式混合运算顺序和运算法则计算可得. 【解答】解:原式====﹣
÷?,
.
÷(﹣)
故答案为:﹣
【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.
17.(3.00分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在则∠BEC= 115 度.
上(不与点B,C重合),连接BE,CE.若∠D=40°,
【分析】连接OC,根据切线的性质求出∠DCO,求出∠COB,即可求出答案.
【解答】解:连接OC,
∵DC切⊙O于C, ∴∠DCO=90°, ∵∠D=40°,