的值;
②连接BE,△D\'MH与△CBE是否相似?请说明理由.
26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.
(1)求直线l的解析式;
(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;
(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.
2018年内蒙古包头市中考数学试卷
参考答案与试题解析
一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项
1.(3.00分)计算﹣A.﹣1 B.﹣5 C.1
﹣|﹣3|的结果是( ) D.5
【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值. 【解答】解:原式=﹣2﹣3=﹣5, 故选:B.
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
2.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )
A. B. C. D.
【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.
【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形, 所以其主视图为:
故选:C.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
3.(3.00分)函数y=A.x≠1
中,自变量x的取值范围是( )
B.x>0 C.x≥1 D.x>1
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解. 【解答】解:由题意得,x﹣1≥0且x﹣1≠0, 解得x>1. 故选:D.
【点评】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.
4.(3.00分)下列事件中,属于不可能事件的是( ) A.某个数的绝对值大于0 B.某个数的相反数等于它本身 C.任意一个五边形的外角和等于540°
D.长分别为3,4,6的三条线段能围成一个三角形
【分析】直接利用随机事件以及确定事件的定义分析得出答案. 【解答】解:A、某个数的绝对值大于0,是随机事件,故此选项错误; B、某个数的相反数等于它本身,是随机事件,故此选项错误;
C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确; D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误. 故选:C.
【点评】此题主要考查了随机事件以及确定事件,正确把握相关定义是解题关键.
5.(3.00分)如果2xa+1y与x2yb﹣1是同类项,那么的值是( )
A. B. C.1 D.3
【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.
【解答】解:∵2xa+1y与x2yb﹣1是同类项, ∴a+1=2,b﹣1=1, 解得a=1,b=2. ∴=. 故选:A.
【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.
6.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是( ) A.4,1
B.4,2
C.5,1
D.5,2
【分析】根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.
【解答】解:数据1,3,4,4,4,5,5,6的众数是4,
,
则故选:B.
【点评】本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.
7.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是( )
=2,
A.2﹣ B.2﹣ C.4﹣ D.4﹣
【分析】过A作AE⊥BC于E,依据AB=2,∠ABC=30°,即可得出AE=AB=1,再根据公式即可得到,阴影部分的面积是×4×1﹣【解答】解:如图,过A作AE⊥BC于E, ∵AB=2,∠ABC=30°, ∴AE=AB=1, 又∵BC=4,
∴阴影部分的面积是×4×1﹣故选:A.
=2﹣
,
=2﹣
.
【点评】本题主要考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积,常用的方法:①直接用公式法;②和差法;③割补法.
8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为( )
A.17.5° B.12.5° C.12° D.10°
【分析】由AB=AC知∠B=∠C,据此得2∠C+∠BAC=180°,结合∠C+∠BAC=145°可知∠C=35°,根据∠DAE=90°、AD=AE知∠AED=45°,利用∠EDC=∠AED﹣∠C可得答案.
【解答】解:∵AB=AC, ∴∠B=∠C,
∴∠B+∠C+∠BAC=2∠C+∠BAC=180°, 又∵∠C+∠BAC=145°,
∴∠C=35°,
∵∠DAE=90°,AD=AE, ∴∠AED=45°,
∴∠EDC=∠AED﹣∠C=10°, 故选:D.
【点评】本题主要考查等腰直角三角形,解题的关键是掌握等腰直角三角形和等腰三角形的性质及三角形的内角和定理、外角的性质.
9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为( ) A.6
B.5
C.4
D.3
【分析】根据方程的系数结合根的判别式△≥0,即可得出m≤3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论. 【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根
∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0, ∴m≤3.