不等式组、一次函数、分式方程、二元一次方程组综合应用题各类中考题展
4750≤0
(28 002x2 00) (300 02 60x0≤)
(100
解得:37.5≤x≤40 x是正整数
x取38,39或40.
y 2200x 2600(100 x) 400x 260000
400 0
y随x的增大而减小
当x 40时,y有最小值.
即生产A型冰箱40台,B型冰箱50台,该厂投入成本最少
此时,政府需补贴给农民(2800 40 3000 60) 13% 37960(元) (3)实验设备的买法共有10种
3.(2009年漳州)为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.
(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?
(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于.....1200元(不包括780元),求甲种消毒液最多能再购买多少瓶? 【关键词】不等式的简单的应用 【答 案】(1)解法一:设甲种消毒液购买x瓶,则乙种消毒液购买(100 x)瓶. 依题意,得6x 9(100 x) 780. 解得:x 40.
. 100 x 100 40 60(瓶)
答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.
解法二:设甲种消毒液购买x瓶,乙种消毒液购买y瓶. 依题意,得
x y 100,
6x 9y 780.
x 40,
解得,
y 60.
答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.
(2)设再次购买甲种消毒液y瓶,刚购买乙种消毒液2y瓶. 依题意,得6y 9 2y≤1200. 解得:y≤50.
答:甲种消毒液最多再购买50瓶.
4(2009威海)响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的