数学思想与方法试题总卷分析
2 4.简述表层类比,并用举例说明。
4.答:①表层类比是根据两个被比较对象的表面形式或结构上的相似所进行的类比。这种类比可靠性较差,结论具有很大的或然性。
②例如,从ac ab c b a +=+)(类比出βαβα
sin sin )sin(+=+是错误的,而类比出 n n n n n n n b a b a ∞
→∞→∞→+=+lim lim )(lim 在数列极限存在的条件下是正确的。
③又如,由三角形内角平分线性质,类比得到三角形外角平分线性质,就是一种结构上的类比。
5.数学思想方法教学为什么要遵循循序渐进原则?试举例说明。
5.答:①数学思想方法的形成难于知识的理解和一般技能的掌握,它需要学生深入理解事物之间的本质联系。②学生对每种数学思想方法的认识都是在反复理解和运用中形成的,是从个别到一般,从具体到抽象,从感性到理性,从低级到高级的沿着螺旋式方向上升的。③例如,学生理解数形结合方法可从小学的画示意图找数量关系着手孕育;在学习数轴时,要求学生会借助数轴来表示相反数、绝对值、比较有理数的大小等。 B 卷
一、填空题(每题3分,共30分)
1.在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的( 《几何原本》 )。
2.随机现象的特点是(在一定条件下,可能发生某种结果,也可能不发生某种结果)。
3.演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。
4.在化归过程中应遵循的原则是(简单化原则、熟悉化原则、和谐化原则)。
5.(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。
6.三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。
7.传统数学教学只注重(形式化数学知识)的传授, 而忽略对知识发生过程中( 数学思想方法 )的挖掘。
8.特殊化方法是指在研究问题中,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。
9.分类方法的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。
10.数学模型可以分为三类:(概念型、方法型、结构型)。
二、判断题(每题2分,共10分。在括号里填上是或否)
1.数学模型方法在生物学、经济学、军事学等领域没应用。 ( 否 )
2.在解决数学问题时,往往需要综合运用多种数学思想方法才能取得效果。 ( 是 )
3.如果某一类问题存在算法,并且构造出这个算法,就一定能求出该问题的精确解。( 否 )
4.分类可使知识条理化、系统化。 ( 是 )
5.在建立数学模型的过程中,不必经过数学抽象这一环节。 ( 否 )
三、简答题(每题6分,共30分)
1.我国数学教育存在哪些问题?
1.答:①数学教学重结果,轻过程;重解题训练,轻智力、情感开发;不重视创新能力培养,虽然学生考试分数高,但是学习能力低下;②重模仿,轻探索,学习缺少主动性,缺乏判断力和独立思考能力;③学生学业负担过重。原因是课堂教学效益不高,教学围绕升学考试指挥棒转,不断重复训练各种题型和模拟考试,不少教师心存以量求质的想法,造成学生学业负担过重。
2.《几何原本》贯彻哪两条逻辑要求?
2.答:《几何原本》贯彻了两条逻辑要求。①第一,公理必须是明显的,因而是无需加以证明的,其是否真实应受推出的结果的检验,但它仍是