抽象函数习题精选精讲(5)

2025-09-13

解:(1)∵f(x)的定义域关于原点对称,且

是定义域中的数时有

,∴在定义域中。∵

∴f(x)是奇函数。

(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,

∴f(x1),f(x2),f(x2-x1

)均小于零,进而知(0,2a)上f(x)是增函数。

中的,于是f(x1)< f(x2),∴在

<x-2a<2a,

,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0

,于是f(x)>0,即在(2a,4a)上f(x)>0。设2a<x1<x2<4a,则0<x2

-x1<2a,从而知f(x1),f(x2)均大于零。f(x2-x1)<0,∵,∴,即

f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数。综上所述,f(x)在(0,4a)上是增函数。

5、幂函数型抽象函数

幂函数型抽象函数,即由幂函数抽象而得到的函数。

例8、已知函数f(x)对任意实数x、y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当(1)判断f(x)的奇偶性;

(2)判断f(x)在[0,+∞)上的单调性,并给出证明; (3

)若

,求a的取值范围。

时,

分析:由题设可知f(x)是幂函数的抽象函数,从而可猜想f(x)是偶函数,且在[0,+∞)上是增函数。

解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴

f(-x)=f(x),f(x)为偶函数。

(2)设,∴,,

∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数。

(3)∵f(27)=9,又

∴,∴,∵,∴,


抽象函数习题精选精讲(5).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:新医院会计制度下医院财务管理改进与风险防范

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219