抽象函数习题精选精讲(3)

2025-09-13

解:设∵∴

在条件中,令y=-x,则(x)为奇函数,

∴ f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4, ∴ f(x)的值域为[-4,2]。 例2、已知函数f(x)对任意

,满足条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,求不,即,∵当

,∴f(x)为增函数。

,再令x=y=0,则f(0)=2 f(0),∴ f(0)=0,故f(-x)=f(x),f

,∴

等式的解。

分析:由题设条件可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设

,∵当

,∴f(x)为单调增函数。

, 又∵f(3)=5,∴f(1)=3

。∴

,∴

,则

,∴

2、指数函数型抽象函数

, 即,解得不等式的解为-1 < a < 3。

例3、设函数f(x)的定义域是(-∞,+∞),满足条件:

存在成立。求:

(1)f(0); (2)对任意值x,判断f(x)值的正负。 分析:由题设可猜测f(x)是指数函数解:(1)令y=0代入

。若f(x)=0,则对任意

(2)令y=x≠0,则

,使得,对任何x和y,

的抽象函数,从而猜想f(0)=1且f(x)>0。 ,则

,∴

,这与题设矛盾,∴f(x)≠0,∴f(0)=1。

,有

,又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,故对任意x,

f(x)>0恒成立。

例4、是否存在函数f(x),使下列三个条件:①f(x)>0,x ∈N;②时成立?若存在,求出f(x)的解析式,如不存在,说明理由。 分析:由题设可猜想存在(1)x=1时,∵

,又由f(2)=4可得a=2.故猜测存在函数

,用数学归纳法证明如下:

,结论正确。 ;③f(2)=4。同

,又∵x ∈N时,f(x)>0,∴


抽象函数习题精选精讲(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:新医院会计制度下医院财务管理改进与风险防范

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219