高中数学必修1—必修5知识点总结(3)

2025-09-23

ya?0Oyf(k)?0?x??Ob2ax1x2kxb2akx2?x1a?0

xx??f(k)?0

③x1<k<x2 ? af(k)<0

ya?0y?f(k)?0x2xa?0Ok?x1x2xx1Okf(k)?0

④k1<x1≤x2<k2 ?

y??a?0yx??f(k1)?0f(k)?02x1x2k2xOb2aOk1k1?x1x2?k2xbx??2af(k1)?0a?0 f(k2)?0 ⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 ? f(k1)f(k2)?0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合

y?a?0yf(k1)?0?f(k1)?0x1k2?Ok1x2xOx1k1a?0x2?k2xf(k2)?0

⑥k1<x1<k2≤p1<x2<p2 ? 此结论可直接由⑤推出. (5)二次函数

f(k2)?0

f(x)?ax2?bx?c(a?0)在闭区间[p,q]上的最值

11

f(x)在区间[p,q]上的最大值为M(Ⅰ)当a,最小值为m,令x0?1(p?q). 2?0时(开口向上)

①若?bbbb?p,则m?f(p) ②若p???q,则m?f(?) ③若??q,则

2a2a2a2am?f(q)

?????????f(q) Of(p) x

Of(q) x

f(p) Obbf(?)(p) )f(?ba2Ma?f(q) ②?b?x2?x0,则①若?,则M?f(p) 0fx

b)2aff(?(q) 2a?2a ?????(p) x0bbbbx(q)?p,则M??q,则M?f(?) ③若??q,则①若?0? f(p) ②若p???O2a2a2a2ax

O(Ⅱ)当a?0时(开口向下f) fx

M?f(q)

①若?

fbf((p)? )2aff(?(q) ?bf(?)2ab)2a?bf(?)2a?ff(?b)2af(p) Of(p) x

O(q) x

Ox

??f

??(q)

??(q)

f

(p) fbb?x0,则m?f(q) ②??x0,则m?f(p). 2a2a?f(?b)2a?f(?f(p) Ofb)2a(q) x0?f

??(q)

x

x0?fO??x

(p) 第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数

y?f(x)(x?D),把使f(x)?0成立的实数x叫做函数

12

y?f(x)(x?D)的零点。 2、函数零点的意义:函数y?f(x)的零点就是方程f(x)?0实数根,亦即函数y?f(x)的图象与x轴交点的横坐标。即:

方程f(x)?0有实数根?函数y?f(x)的图象与x轴有交点?函数y?f(x)有零点.

3、函数零点的求法:

y?f(x)的零点:

1 (代数法)求方程f(x)?0的实数根; ○

求函数

2 (几何法)对于不能用求根公式的方程,可以将它与函数○

用函数的性质找出零点. 4、二次函数的零点:

y?f(x)的图象联系起来,并利

y?ax2?bx?c(a?0).

21)△>0,方程ax?bx?c?0有两不等实根,二次函数的图象与x轴有两个交点,二次

二次函数

函数有两个零点.

2)△=0,方程ax?bx?c?0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程ax22?bx?c?0无实根,二次函数的图象与x轴无交点,二次函数无零点.

高中数学 必修3知识点

第一章 算法初步

1.1.1

算法的概念

1、算法概念:

在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2. 算法的特点:

(1)有限性(2)确定性(3)顺序性与正确性(4)不唯一性(5)普遍性

1.1.2 程序框图

1、程序框图基本概念:

(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。 (二)构成程序框的图形符号及其作用

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:

1、使用标准的图形符号。2、框图一般按从上到下、从左到右的方向画。3、除判断框外,大多数流程图

13

符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。5、在图形符号内描述的语言要非常简练清楚。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B 框是依次执行的,只有在执行完A框指定的操作后,才能接着执 行B框所指定的操作。 2、条件结构:

条件结构是指在算法中通过对条件的判断 根据条件是否成立而选择不同流向的算法结构。

条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。

3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:

(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。

当型循环结构 直到型循环结构

注条件下终A B A A P 此,循环结构中一P 意:1循环结构要在某个

不成立 止循环,这就需要条件结构来判断。因成立 成立 不成立 14

定包含条件结构,但不允许“死循环”。2在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。

1.2.1 输入、输出语句和赋值语句

1、输入语句

(1)输入语句的一般格式

INPUT“提示内容”;变量 图形计算器格式 INPUT “提示内容”,变量 (2)输入语句的作用是实现算法的输入信息功能;(3)“提示内容”提示用户输入什么样的信息,变量是指程序在运行时其值是可以变化的量;(4)输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;(5)提示内容与变量之间用分号“;”隔开,若输入多个变量,变量与变量之间用逗号“,”隔开。 2、输出语句

(1)输出语句的一般格式

PRINT“提示内容”;表达式 图形计算器格式 Disp “提示内容”,变量 (2)输出语句的作用是实现算法的输出结果功能;(3)“提示内容”提示用户输入什么样的信息,表达式是指程序要输出的数据;(4)输出语句可以输出常量、变量或表达式的值以及字符。 3、赋值语句

(1)赋值语句的一般格式

(2)赋值语句的作用是将表达式所代表的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值。

注意:①赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。②赋值号左右不能对换。如“A=B”“B=A”的含义运行结果是不同的。③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同。 1.2.2条件语句

1、条件语句的一般格式有两种:(1)IF—THEN—ELSE语句;(2)IF—THEN语句。2、IF—THEN—ELSE语句

IF—THEN—ELSE语句的一般格式为图1,对应的程序框图为图2。

变量=表达式 图形计算器格式 表达式?变量 IF 条件 THEN 语句1 满足条件? 是 语句1 否 ELSE 15

语句2 END IF 语句2


高中数学必修1—必修5知识点总结(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:C语言程序设计下mooc答案

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219