高中数学必修1—必修5知识点总结

2025-09-23

高中数学必修1-必修5知识点总结

高中数学 必修1知识点 第一章 集合与函数概念

〖1.1〗集合

【1.1.1】集合的含义与表示

(1)集合的概念

集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法

N表示自然数集,N?或N?表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.

(3)集合与元素间的关系

对象a与集合M的关系是a?M,或者a?M,两者必居其一. (4)集合的表示法 ①自然语言法

②列举法 ④图示法 (5)集合的分类

①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?).

【1.1.2】集合间的基本关系

(6)子集、真子集、集合相等 (7)已知集合它有2nA有n(n?1)个元素,则它有2n个子集,它有2n?1个真子集,它有2n?1个非空子集,

?2非空真子集.

【1.1.3】集合的基本运算

(8)交集、并集、补集 (1)含绝对值的不等式的解法 (2)一元二次不等式的解法

〖1.2〗函数及其表示 【1.2.1】函数的概念

(1)函数的概念

①设

A、B是两个非空的数集,如果按照某种对应法则f,对于集合

A中任何一个数x,在集合B)

中都有唯一确定的数叫做集合

f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则fA到B的一个函数,记作f:A?B.

②函数的三要素:定义域、值域和对应法则.

③只有定义域相同,且对应法则也相同的两个函数才是同一函数.

1

(2)区间的概念及表示法

①设a,b是两个实数,且a?b,满足a?x?b的实数x的集合叫做闭区间,记做[a,b];满足

a?x?b的实数x的集合叫做开区间,记做(a,b);满足a?x?b,或a?x?b的实数x的

集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x?a,x合分别记做[a,??),(a,??),(??,b],(??,b).

(3)求函数的定义域时,一般遵循以下原则:

①②③

?a,x?b,x?b的实数x的集

f(x)是整式时,定义域是全体实数.

f(x)是分式函数时,定义域是使分母不为零的一切实数.

f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.

④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤

y?tanx中,x?k???2(k?Z).

⑥零(负)指数幂的底数不能为零. ⑦若

f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数

的定义域的交集.

⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域应由不等式a?f(x)的定义域为[a,b],其复合函数f[g(x)]g(x)?b解出.

⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值

②配方法: ③判别式法 ④不等式法 ⑤换元法

⑥反函数法⑦数形结合法⑧函数的单调性法.

【1.2.2】函数的表示法

(5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种. (6)映射的概念

①设

A、B是两个集合,如果按照某种对应法则f,对于集合

A中任何一个元素,在集合B中都有

)叫做集合

唯一的元素和它对应,那么这样的对应(包括集合

A,B以及A到B的对应法则fA到

2

B的映射,记作f:A?B.

②给定一个集合

A到集合B的映射,且a?A,b?B.如果元素a和元素b对应,那么我们把元素

b叫做元素a的象,元素a叫做元素b的原象.

〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值

(1)函数的单调性

①定义及判定方法 函数的 性 质 定义 如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x< x时,都12.....有f(x)f(x),那么就说12...........f(x)在这个区间上是减函数. ...x1x2x 象上升为增) (4)利用复合函数 (1)利用定义 yf(x )1y=f(X)f(x )2(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图 x2ox1x 象下降为减) (4)利用复合函数 ②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数

y?f[g(x)],令u?g(x),若

y?f(u)为增,

u?g(x)为增,则

y?f[g(x)]为增;若y?f(u)为减,u?g(x)为减,则y?f[g(x)]为增;若y?f(u)为

增,u?g(x)为减,则y?f[g(x)]为减;若y?f(u)为减,u?g(x)为增,则y

y?f[g(x)]为减.

(2)打“√”函数

f(x)?x?a(a?0)的图象与性质 xo

x

f(x)分别在(??,?a]、[a,??)上为增函数,分别在

[?a,0)、(0,a]上为减函数.

3

(3)最大(小)值定义 ①一般地,设函数

y?f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x?I,都有

f(x)?M (2)存在

是函数

x0?I,使得f(x0)?M.那么,我们称Mf(x) 的最大值,记作

fmax(x)?M.

②一般地,设函数

y?f(x)的定义域为I,如果存在实数m满足:(1)对于任意的x?I,都有

(2)存在x0?I,使得f(x0)?m.那么,我们称m是函数f(x)的最小值,记作f(x)?m;

fmax(x)?m.

【1.3.2】奇偶性

(4)函数的奇偶性

①定义及判定方法 函数的 性 质 定义 如果对于函数f(x)定义域内任意一个x,都有.f(-x)=-......f(x),那么函数f(x)叫做奇函......数. .函数的 奇偶性 如果对于函数f(x)定义域内任意一个x,都有.f(-x)=f(x),.........那么函数f(x)叫做偶函数. ... (1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y轴对称) ②若函数

图象 判定方法 (1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) f(x)为奇函数,且在x?0处有定义,则f(0)?0.

③奇函数在

y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.

④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.

〖补充知识〗函数的图象

(1)作图

利用描点法作图:

①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:

要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本

4

初等函数的图象. ①平移变换

h?0,左移h个单位y?f(x)????????y?f(x?h)h?0,右移|h|个单位k?0,上移k个单位y?f(x)????????y?f(x)?k

k?0,下移|k|个单位②伸缩变换

0???1,伸y?f(x)?????y?f(?x)

??1,缩0?A?1,缩y?f(x)?????y?Af(x)

A?1,伸③对称变换

y轴x轴y?f(x)????y??f(x) y?f(x)????y?f(?x)

直线y?x原点y?f(x)????y??f(?x) y?f(x)?????y?f?1(x) 去掉y轴左边图象y?f(x)????????????????y?f(|x|)

保留y轴右边图象,并作其关于y轴对称图象保留x轴上方图象y?f(x)??????????y?|f(x)|

将x轴下方图象翻折上去(2)识图

对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图

函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,

获得问题结果的重要工具.要重视数形结合解题的思想方法.

第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数

【2.1.1】指数与指数幂的运算

(1)根式的概念

①如果xn?a,a?R,x?R,n?1,且n?N?,那么x叫做a的n次方根.当n是奇数时,

a的n次方根用符号na表示;当n是偶数时,正数a的正的n次方根用符号na表示,负的n次方

根用符号?na表示;0的n次方根是0;负数a没有n次方根.

a叫做根式,这里n叫做根指数,a叫做被开方数.当n为奇数时,a为任意实数;当

②式子nn为偶数时,a?0.

③根式的性质:

(na)n?a;当

n为奇数时,

nan?a;当

n为偶数时,

n?a (a?0). an?|a|????a (a?0) 5


高中数学必修1—必修5知识点总结.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:C语言程序设计下mooc答案

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219