(2)设新建m个地上停车位,根据小区预计投资金额超过
10万元而不超过11万元,可列出不等式求解.
(3根据第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,可写出方案. 解:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,由题意得
,
解得 ,
答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元;(4分)
﹙2﹚设新建m个地上停车位,则 10<0.1m+0.4(50-m)≤11, 解得30≤m<
,
因为m为整数,所以m=30或m=31或m=32或m=33, 对应的50-m=20或50-m=19或50-m=18或50-m=17, 所以,有四种建造方案.(4分)
﹙3﹚建造方案是:建造32个地上停车位,18个地下停车位.(2分)
点评:本题考查理解题意的能力,根据建造地上车位和地下车位个数的不同花费的钱数不同做为等量关系列出方程求解,根据投入的资金列出不等量关系,根据该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,找到方案.
26、(2011?湛江)某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表: A种产品 B种产品 成本(万元∕件) 3 5 利润(万元∕件) 1 2 (1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?
(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)条件下,哪种方案获利最大?并求最大利润.
考点:一元一次不等式组的应用;二元一次方程组的应用。
分析:(1)设A种产品x件,B种为(10﹣x)件,根据共获利14万元,列方程求解.
(2)设A种产品x件,B种为(10﹣x)件,根据若工厂投入资金不多于44万元,且获利多于14万元,列不等式组求解.
(3)从利润可看出B越多获利越大.
解答:解:(1)设A种产品x件,B种为(10﹣x)件, x+2(10﹣x)=14, x=6,
A生产6件,B生产4件;
(2)设A种产品x件,B种为(10﹣x)件,
,
3≤x<6.
方案一:A 3件 B生产7件.
方案二:A生产4件,B生产6件. 方案三:A生产5件,B生产5件;
(3)第一种方案获利最大, 3×1+7×2=17.
最大利润是17万元.
点评:本题考查理解题意的能力,关键从表格种获得成本价和利润,然后根据利润这个等量关系列方程,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后求出那种方案获利最大从而求出来. 21、(2011?潍坊)2010年秋冬北方严重干早,凤凰社区人畜饮用水紧张.毎天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂毎天最多可调出80吨,乙厂毎天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:
到凤凰社区供水点的路程运费(元/吨?千(千米) 米) 甲厂 20 12 乙厂 14 15 (1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?
(2)设从甲厂调运饮用水x吨,总运费为W元.试写出W关于与x的函数关系式,怎样安排调运方案才能使毎天的总运费最省?
考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用。 专题:优选方案问题。
分析:(1)设设从甲厂调运了x吨饮用水,从甲厂调运了y吨饮用水,然后根据题意毎天需从社区外调运饮用水120吨与某天调运水的总运费为26700元列方程组即可求得答案; (2)首先根据题意求得一次函数W=20×12x+14×15(120﹣x),又由甲厂毎天最多可调出80吨,乙厂毎天最多可调出90吨,确定x的取值范围,则由一次函数的增减性即可求得答案.
解答:解:(1)设从甲厂调运了x吨饮用水,从甲厂调运了y吨饮用水, 由题意得:
,
解得:,
∵50≤80,70≤90,
∴符合条件,
∴从甲、乙两水厂各调运了50吨、0吨吨饮用水;
(2)从甲厂调运饮用水x吨,则需从乙调运水120﹣x吨,
∵x≤80,且120﹣x≤90, ∴30≤x≤80,
总运费W=20×12x+14×15(120﹣x)=30x+25200, ∵W随X的增大而增大,
∴当x=30时,W最小=26100元,
∴每天从甲厂调运30吨,从乙厂调运90吨,每天的总运费最省.
点评:此题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.
20.(2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.
⑴设从A水库调往甲地的水量为x万吨,完成下表
甲 乙 总计 水量/万吨调入地 调出地 A x 14 B 14 总计 15 13 28 ⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨?千米)
【解题思路】通过读题、审题
(1)完成表格有2个思路:从供或需的角度考虑,均能完成上表。
(2)运用公式(调运水的重量×调运的距离)
总调运量=A的总调运量+B的总调运量调运水的重量×调运的距离
y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275(注:一次函数的最值要得到自变量的取值范围)∵5>0∴y随x的增大而增大,y要最小则x应最大
??x?0由??14?x?0?15?x?0解得1≤x≤14
??x?1?0y=5x+1275中∵5>0∴y随x的增大而增大,y要最小则x应最小=1
∴调运方案为A往甲调1吨,往乙调13吨;B往甲调14吨,不往乙调。 【答案】⑴(从左至右,从上至下)14-x 15-x x-1
⑵y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275 解不等式1≤x≤14
所以x=1时y取得最小值 y=5+1275=1280
∴调运方案为A往甲调1吨,往乙调13吨;B往甲调14吨,不往乙调。
1. ( 2011重庆江津, 26,12分) 在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,高矩形的边长AB=y米,BC=x米.(注:取π=3.14)
(1)试用含x的代数式表示y;
(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;