2016年5月7日福州高三质检文科数学含答案
2k
,
1 4k2
4k2 k
,所以圆心M坐标为 ,
22 1 4k1 4k
所以y1 y2 k x1 x2 2
PQ 1 x2 ···························· 9分 2
4 1 k2 1 3k2 4k2 k
y 所以 M的方程为 x . ················ 10分 2 2 221 4k 1 4k 1 4k
2
222222
4k2 k 4 1 k 1 3k 4k k 1 0 0, ·因为 2 ············· 11分 2 2 22221 4k1 4k 1 4k 1 4k
所以点A在 M外. ················································································ 12分 (21)本小题主要考查导数的几何意义、函数的单调性、导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等.满分12分.
解:(Ⅰ)f x ex a,依题意,设切点为(x0,0), ······································ 1分
x
f(x0) 0, e0 a(x0 1) 0,
则 即 x
0 f(x) 0,0 e a 0,
x 0,解得 0 ······························································································ 3分
a 1,
所以f x ex 1,
所以,当x 0时,f x 0;当x 0时,f x 0.
所以,f x 的单调递减区间为( ,0),单调递增区间为 0, . ······················· 5分 (Ⅱ)令g(x) f(x) mx2, 则g (x) ex 2mx 1,
令h(x) g (x),则h (x) ex 2m, ······························································· 7分
1
(ⅰ)若m ,
2
因为当x 0时,ex 1,所以h (x) 0, 所以h(x)即g (x)在[0, )上单调递增.
又因为g (0) 0,所以当x 0时,g (x) g 0 0, 从而g(x)在[0, )上单调递增,
而g(0) 0,所以g(x) g 0 0,即f(x) mx2成立. ······································ 9分
1
, 2
令h (x) 0,解得x ln(2m) 0,
当x (0,ln(2m)),h (x) 0,所以h(x)即g (x)在[0,ln(2m))上单调递减, 又因为g (0) 0,所以当x (0,ln(2m))时,g (x) 0, (ⅱ)若m

