??? F(t)??(t)f(x?y?z)dv222??,G(t)?D(t)f(x?y)d?22??D(t)f(x?y)d?22?t,
f(x)dx2?1其中?(t)?{(x,y,z)x2?y2?z2?t2},D(t)?{(x,y)x2?y2?t2}.
(1) 讨论F(t)在区间(0,??)内的单调性. (2)证明当t?0时,F(t)?解:(1)因为
2G(t).
? F(t)??2?0d????02?d??f(r)rsin?dr0t220d??t?2?f(r)rdr0t220f(r)rdr2?,
t,
0f(r)rdr2 F?(t)?2tf(t)?f(r)r(t?r)dr0t2t2[?f(r)rdr]022所以在(0,??)上F?(t)?0,故F(t) 在(0,??)内单调增加.
(2) 因
? G(t)???t0tf(r)rdr2,
f(r)dr2G(t)?0,即
20要证明t>0时F(t)?
2?G(t),只需证明t>0时,F(t)?t2t22??t0f(r)rdr?f(r)dr?[?f(r)rdr]?0.
0022令 g(t)??t0f(r)rdr?f(r)dr?[?f(r)rdr],
002t22022t2t22则 g?(t)?f(t)?f(r)(t?r)dr?0,故g(t)在(0,??)内单调增加.
因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0).
又g(0)=0, 故当t>0时,g(t)>0,
2因此,当t>0时,F(t)?G(t).
??2?(20)假设A?0???111a13c?1?2??0????1???1,b?1,????. 如果?是方程组Ax?b的一个解, 试求Ax?b的通解. ????1?1?0?????????1?
?1??【解】:将????1???1?代入Ax?b, 得到1?a?c?1?0,a?c.
???1???2112?0????2112?0???0131?1????0131?1? ??1aa1?0?????0a?12a?120?0???i)、 a?c?12 ??2112?0???2112?0??20?21??0131?1????11?0131?1?????0131???1221?0?????0000?0????0000?于是 r(A)?r(A)?2, 基础解系所含解向量个数为: 4?r(A)?2. 齐次方程: ?2x1?2x?3?x4?0,
?x2?3x3?x4?0令 x3?1,x4?0,解得x2??3,x1?1, 解向量为: (1,?3,1,0)T 令 x3?0,x4?2,解得x2??2,x1??1, 解向量为: (1,?2,0,2)T?1??1???1???所以通解为: ??1???k?3???2?1???k2???1??1??0? ??1????0????2??ii)、a?c?12 ?2112?0??112?0???2??0131?1????0131?1? ??1aa1?0???1??0a?2a?120?0????20?21??1????0131?1?? ??00?2?1??1??于是 r(A)?r(A)?3, 基础解系所含解向量个数为:4?r(A)?1.
?1?1??0??
??2x1?2x3?x4?0? 齐次方程: ?x2?3x3?x4?0,
?1?(1?a)x3?(?a)x4?0?2令 x4?2,解得x3??1,x2?1,x1??2, 解向量为: (?2,1,?1,2)T ?1???2??????11? 所以通解为: ???k??1???1??????1??2??3?(21)设矩阵A?2???22322??0??2,P?1???3???01000??1,B?P?1A*P,求B?2E的特征值与特征向量,其中A*?1??为A的伴随矩阵,E为3阶单位矩阵.
解: 方法一:
经计算可得
?5? A*??2????2?25?2?2??0???1?2, P?1???5???005?20???4. ?3??100?1??0, ?1???7? B?P?1A*P=?2????2从而
?9? B?2E??2????207?20???4, ?5????9?E?(B?2E)?22004?(??9)(??3),
2??72??5故B?2E的特征值为?1??2?9,?3?3.
当?1??2?9时,解(9E?A)x?0,得线性无关的特征向量为 ??1???2????? ?1?1, ?2?0,
???????0???1??
所以属于特征值?1??2?9的所有特征向量为
??1???2??????k11?k20,其中k1,k2是不全为零的任意常数.
???????0???1?? k1?1?k2?2当?3?3时,解(3E?A)x?0,得线性无关的特征向量为
?0??? ?3?1,
????1???0???所以属于特征值?3?3的所有特征向量为k3?3?k31,其中k3?0为任意常数.
????1??方法二:设A的特征值为?,对应特征向量为?,即 A????. 由于A?7?0,所以??0.
A 又因 A*A?AE,故有 A*????.
于是有 B(P?)?P?1?1A*P(P?)??1A?(P?),
?1 (B?2E)P??(?1A??2)P?.
?1因此,
A??2为B?2E的特征值,对应的特征向量为P?.
?1??3由于 ?E?A??2?2?2?2?2?(??1)(??7),
2??3?2??3故A的特征值为?1??2?1,?3?7.
??1???1?????当?1??2?1时,对应的线性无关特征向量可取为?1?1, ?2?0.
???????0???1???1???当?3?7时,对应的一个特征向量为?3?1.
????1??
由 P?1?0??1???0100?1??1???1??0?????????1?1?10,得P?1??1,P?2??1,P?3?1. ??????????1???0???1???1??因此,B?2E的三个特征值分别为9,9,3.
对应于特征值9的全部特征向量为
?1???1??????k1?1?k2?1,其中k1,k2是不全为零的任意常数;
???????0???1?? k1P?1?k2P?2?1?1对应于特征值3的全部特征向量
?0????1 k3P?3?k31,其中k3是不为零的任意常数.
????1???1(22)设随机变量X与Y独立,其中X的概率分布为X~??0.3?2??,而Y的概率分布为f(y),试求随机0.7??变量U?X?Y的概率密度g(u) 解:
P{U?u}?P{X?Y?u}?P{X?Y?uX?1}P{X?1}?P{X?Y?uX?2}P{X?2}?P{Y?u?1X?1}P{X?1}?P{Y?u?2X?2}P{X?2}由于X与Y独立,可知P{Y?u?1X?1}?P{Y?u?1},P{Y?u?2X?2}?P{Y?u?2}则P{X?Y?u}?P{Y?u?1}?0.3?P{Y?u?2}?0.7?0.3F(u?1)?0.7F(u?2)因此FU(u)?0.3F(u?1)?0.7F(u?2),从而g(u)?0.3f(u?1)?0.7f(u?2)
?2e?2(x??),若x??(23)设总体X的概率密度为f(x)??,
若x???0,^其中??0是未知参数.从总体X中抽取简单随机样本X1,X2,?,Xn,记??min(X1,X2,...,Xn),
(1) 求总体X的分布函数F(x)^;
(2) 求统计量?的分布函数F^(x);
?^(3) 如果用?作为?的估计量,讨论它是否具有无偏性.
解: (1)F(x)?x???f(t)dt,当x??,F(x)?0;