基于ANSYS的齿轮应力有限元分析(3)

2025-09-15

图6旋转工作坐标系 图7镜像渐开线

小齿轮的齿廓线生成之后,单击主菜单中的main menu/modeling/create /areas/arbirtaty/by lines.生成一个齿面(见图8)。

利用渐开线产生端面的一个齿形,将其复制、阵列(见图9)。在齿轮坐标系中以齿根圆半径画一个空心圆,进过布尔操作等,最终生成一个小齿轮(见图10)。

图8齿轮的单个齿 图9复制齿轮的齿

对于大齿轮的生成参看小齿轮的方法(大齿轮渐开线生成的命令流见附录),首先建立距离小齿轮圆心为在X方向上为270mm的局部坐标系,单击应用菜单workplane/local coordinate systems/create local cs/at specified loc,在弹出的对话框中输入270,0,0,然后创建局部圆柱坐标系11和局部笛卡尔坐标系12,,在此两个坐标系下输入附录2中的命令流,直接生成大齿轮渐开线,模仿小齿轮的生成方法,最终生成大齿轮(如图11所示)。

图10小齿轮模型 图11大齿模型

大齿轮在X轴上平移中心距距离为270mm,则大小齿轮的中心连线通过小齿轮齿根圆周上齿间距的中点,通过大齿轮齿顶圆周上齿厚的中点,要确定两个齿轮在啮合线上相啮合的位置。由于在分度圆上齿轮的齿厚和齿间距相等,则小齿轮到节点啮合位置就要转动360/4z2度,即为90/45度,大齿轮转到节点啮合位置就要转动360/z1度,即90/90度,即可使两个齿轮在节点处啮合,由于软件本身的误差原因,可能齿轮会存在啮合不太好的情况,此时,可以转换当前激活坐标系为圆柱坐标系,单/prepprocessor/modeling/move/modify/rotate/areas,旋转齿轮为一定的角度,知道两个齿轮相互啮合。最终可得到两大小齿轮在ansys中的二维模型(如图10所示)。由于直齿轮在轴向应力所受应力一致,所以可用二维模型代替三维模型(见参考文献13)。

图12相互啮合的大小齿轮

4齿轮接触应力分析 4.1模型网格划分

实体建模的最终目的是划分网格以生成节点和单元。生成节点和单元的网

格划分过程分为两个步骤:(1)定义单元属性;(2)定义网格生成控制并生成网格。 在单元库中选择SOLID42两齿轮的实体单元,因为SOLID42 为四边形单元,有四个节点,相对于三角形单元而言,计算精度更高,没有三角形那样刚硬,对于带中间节点的四边形而言,节点数更少,节约计算时间,而精度下降不大。

单击/preprocessor/meshing/meshtool/,如图13所示,在弹出的对话框如图14meshtool中选择smartsize,6级精度,单击mesh,选择所要划分的两个齿轮。

图13主菜单中划分网格 图14开始划分网格

25 定义材料属性中弹性模量EX=2.06?10N?mm,泊松比PRXY=0.3,摩擦系数为MU=0.3。要求出精确解,就要在啮合区域进一步细分网格,细分结果见图(15):

图15 划分网格后的齿轮

4.2创建接触对

利用ansys接触向导(见下图18),单击左上角创建接触对按钮,弹出如图16所示contact wizard对话框,在targetsurface下选择线,单击pick target弹出selectlinesfor…如图17所示对话框,将啮合小齿轮的齿廓线2和大齿轮的齿廓线1设置为接触对,是齿廓线1为接触面,齿廓线2为目标面,最终生成解除对(见下图19)。同时,将其接触刚度因子FKN和拉格朗日算法允许的最大渗透量FTLON分别设置为1.0和0.1。

图16选择接触类型 图17选择要接触的线

图18ANSYS接触向导 图19接触对

4.3施加边界条件和载荷

接触区域应能保证它足以描述所需要的接触行为。Ansys面-面接触单元使用GAUSS积分点作为接触检查点的缺省值,它比Newton-Cotes/robatto节点积分项产生更精确的结果,把节点坐标系换到柱坐标系,单击应用菜单中的/select/entieies/在弹出的对话框中选择lines/by num and pick/选择小齿轮中内径圆的四条线,之后在选择nodes/attach to/lines all,再单击/preprocessor/modeling/move/modify/rotate node cs/to active cs,则小齿轮的内径圆上的节点坐标系全部转换为柱坐标系,此时X,Y分别代表R,?。单击/preprocessor/solution/define loads/displacement/on nodes(如图20所示),在弹出的对话框中定义x方向固定不动,使其只有绕齿轮回转中心的转动自由度,即约束X轴。再次单击/preprocessor/solution/define loads/force and moments/on nodes(如图21所示),在弹出的对话框中选择fy,输入fy的值为-82.9N,则至此小齿轮上的边界条件和载荷施加完毕。同理,约束大齿轮安装孔表面上的节点的所有自由度。约束结果见图16所示

图20定义约束 图21施加载荷


基于ANSYS的齿轮应力有限元分析(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:学校开展党建工作中的特色亮点

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219