99-10年药大生理学问答题详解 - 图文(2)

2025-06-28

4、简述反射中枢兴奋传布的特征。 答: 1.单向传布。在中枢神经系统中,冲动只能沿着特定的方向和途径传播,即感受器兴奋产生的冲动向中枢传递,中枢的冲动则传向效应器,这种现象称为单向传布。 2.反射时和中枢延搁。从刺激作用于感受器起,到效应器发生反应所经历的时间,称为反射时(reflex time),这是兴奋通过反射弧(relex arc)各个环节所需的时间。其中兴奋通过突触时,经历时间较长,即所谓突触延搁。 3.总和。在突触传递中,突触前末梢的一次冲动引起释放的递质不多,只引起突触后膜的局部去极化,产生兴奋性突触后电位,如果同一突触前末梢连续传来多个冲动,或多个突触前末梢同时传来一排冲动,则突触后神经元可将所产生的突触后电位总和起来,待达到阈电位水平时,就使突触后神经元兴奋,前者称为时间总和,后者称为空间总和。在中枢内兴奋的总和实际上就是突触总和。 4.扩散与集中。由机体不同部位传入中枢的冲动,常最后集中传递到中枢内某一部位,这种现象称为中枢兴奋的集中。 从机体某一部位传入中枢的冲动,常不限于中枢的某一局部,而往往可引起中枢其它部位发生兴奋。这种现象称为中枢兴奋的扩散。 5.兴奋节律的改变。在一个反射活动中,如果同时分别记录背根传入神经和腹根传出神经的冲动频率,可发现两者的频率并不相同。 6.后放。在一个反射活动中,常可看到,当刺激停止后,传出神经仍可在一定时间内连续发放冲动,使反射能延续一段时间,这种现象称为后放。 7.易化作用和抑制作用。中枢内每一神经元兴奋性可受到其它神经元的影响而发生变化。当其兴奋性受到影响而升高时,其兴奋阈值降低,则兴奋的传递易于进行,反射易于发生,这一现象医学教育网搜集整理称为中枢兴奋的易化作用。与此相反,当某一神经元的兴奋性因受到其它神经元的影响而降低时,则兴奋阈值就升高,使中枢兴奋的传递难以进行,反射也较难发生,这一现象称为中枢兴奋的抑制作用。 8.对内环境变化的敏感性和易疲劳性。 在反射活动中,突触是反射弧中最易发生疲劳的部位。因为,在经历了长时间的突触传递后,突触小泡内的递质将大大减少,从而影响突触传递而发生疲劳。突触也最易受内环境变化的影响,称为突触的敏感性。(突触对PH值和某些药物极为敏感 5.试述胰岛素分泌的调节。 答:1.血糖的作用 血糖浓度是调节胰岛素分泌的最重要因素,当血糖浓度升高时,胰岛素分泌明显增加,从而促进血糖降低。当血糖浓度下降至正常水平时,胰岛素分泌也迅速恢复到基础水平。在持续高血糖的刺激下,胰岛素的分泌可分为三个阶段:血糖升高5min内,胰岛素的分泌可增加约10倍,主要来源于B细胞贮存的激素释放,因此持续时间不长,5~10min后胰岛素的分泌便下降50%;血糖升高15min后,出现胰岛素分泌的第二次增多,在2~3h达高峰,并持续较长的时间,分泌速率也远大于第一相,这主要是激活了B细胞胰岛素合成酶系,促进了合成与释放;倘若高血持续一周左右,胰岛素的分泌可进一步增加,这是由于长时间的高血糖刺激B细胞增生布引起的。 2.氨基酸和脂肪酸的作用 许多氨基酸都有刺激胰岛素分泌的作用,其中以精氨酸和赖氨酸的作用最强。在血糖浓度正常时,血中氨基酸含量增加,只能对胰岛素的分泌有轻微的刺激作用,但如果在血糖升高的情况下,过量的氨基酸则可使血糖引起的胰岛素分泌加倍增多。务右脂肪酸和酮体大量增加时,也可促进胰岛素分泌。 3.激素的作用 影响胰岛素分泌的激素主要有: ①胃肠激素,如胃泌素、促胰液素、胆囊收缩素和抑胃肽都有促胰岛素分泌的作用; ②生长素、皮质醇、甲状腺激素以及胰高血糖素可通过升高血糖浓度而间接刺激胰岛素分泌,因此长期大剂量应用这些激素,有可能使B细胞衰竭而导致糖尿病; ③胰岛D细胞分泌的生长抑素可通过旁分泌作用,抑制胰岛素和胰高血糖的分泌,而胰高血糖素也可直接刺激B细胞分泌胰岛素。 4.神经调节 胰岛受迷走神经与交感神经支配。刺激迷起神经,可通过乙酰胆碱作用于M受体,直接促进胰岛素的分泌;迷走神经还可通过刺激胃肠激素的释放,间接促进胰岛素的分泌。交感神经兴奋时,则通过去甲肾上腺素作用于α2受体,抑制胰岛素的分泌。 2008年

三、简答题 1、简述电刺激坐骨神经引起腓肠肌兴奋的机制。 答:引起神经细胞和肌细胞产生动作电位,引起兴奋。 电刺激会导致电压门控式离子通道的开放,改变膜内外电荷的分布而引起动作电位。 2、简述心肌慢反应自律细胞动作电位的形成机制。 答:自律心肌细胞丧失了收缩性,但它们和工作心肌细胞一样具有传导性和兴奋性。而且它们还具有独特的自律性,所谓自律性,就是这些心肌细胞在其动作电位的4期存在着一个自动去极化过程,并会产生新一轮的动作电位。 3.、肾上腺素,甲状腺素,乙酰胆碱对血压的作用。 答:肾上腺素具有与交感神经兴奋类似的作用,使血管收缩,心脏活动增强,血压升高。肾上腺素作用于肾上腺素能α、β受体,产生强烈快速而短暂的兴奋α和β型效应,对心脏β1-受体的兴奋,可使心肌收缩力增强,心率加快,心肌耗氧量增加。同时作用于骨骼肌β2-受体,使血管扩张,降低周围血管阻力而减低舒张压。 甲状腺素:加快代谢速度,刺激心血管的兴奋性,心脏活动增强,血压升高。(*) 乙酰胆碱:血管扩张作用,减慢心率,减慢房室结和普肯耶纤维传导,减弱心肌收缩力,缩短心房不应期,降低血压。 4、给家兔灌胃50ml蒸馏水,尿量会发生什么变化?为什么? 答:尿量将增加。原因:给家兔灌胃蒸馏水后,水可在结肠内被吸收入血,引起血浆晶体渗透压降低,导致ADH分泌减少,对水的重吸收减少,从而使尿量增多。 (促进ADH分泌的主要刺激因素是增加血浆的渗透压(通过下丘脑中渗透压感受器起作用)和降低动脉压或血容量(通过动脉压力感受器和容积感受器的传入通路)。ADH具有两个主要的作用:1.ADH通过对血管加压素V1受体的作用,引起体循环小动脉收缩,包括引起肾脏小动脉的收缩。2.ADH增加肾脏对水的重吸收,这主要是通过增强集合管对水的通透性。ADH与主细胞基侧膜V2受体相结合,增加腺苷酸环化酶的活性,从而使细胞内的ccAMP的浓度增加。引起镶嵌到细胞腔膜面中的水通道增多。)

5.叙述下丘脑特异性投射系统和非特异性投射系统的组成,功能及相互关系。 答:一般认为,经典的各种特殊感觉传导道,如皮肤浅感觉、深感觉、听觉、视觉、味觉(除嗅觉外)的传导束和神经元序列是固定的,他们经脊髓或脑干,上升到丘脑感觉接替核,换神经元后,投射到大脑皮层的特定感觉区,主要终止于皮质的第四层细胞。每一种感觉的投射路径都是专一的,具有点对点的投射关系,故称为特异性投射系统(specific projection system)。其主要功能是引起特定的感觉,并激发大脑皮层发出神经冲动。丘脑的联络核在结构上也与大脑皮层有特定的投射关系,所以也属于特异投射系统,但它不引起特定感觉,主要起联络和协调的作用。 特异性投射系统的第二级神经元的部分纤维或侧支进入脑干网状结构,与其内的神经元发生广泛地突触联系,并逐渐上行,抵达丘脑内侧部,然后进一步弥散性投射到大脑皮层的广泛区域。所以,这一感觉投射系统失去了专一的特异性感觉传导功能,是各种不同感觉的共同上传途径。又称为非特异性投射系统。其主要功能是维持和改变大脑皮层的兴奋状态。 要在大脑皮质产生感觉,有赖于特异性和非特异性投射系统的互相配合。只有通过非特异性投射系统的冲动,才能使大脑皮质的感觉区保持一定的兴奋性。同时只有通过特异性投射系统的各种感觉冲动,才能在大脑皮质中产生特定的感觉。 6.叙述糖皮质激素分泌的调节。 1)下丘脑一垂体一肾上腺轴:下丘脑一垂体一肾上腺轴(HPA)系统是糖皮质激素分泌调节的中心。糖皮质激素由肾上腺皮质束状带所分泌,其生成和分泌受腺垂体细胞分泌的促皮质素(ACTH)的调节和控制,而ACTH则又受下丘脑分泌的促皮质素释放因子(CRF)调节。接受刺激的感受器通过传入神经至大脑皮质,进而刺激下丘脑分泌CRF,CRF作用于腺垂体细胞,通过其受体激活腺苷酸环化酶,使细胞内的环磷酸腺苷(CAMP)浓度升高,促进ACTH的合成及分泌。ACTH则通过相同的机制作用于肾上腺皮质细胞,以促进其合成及分泌糖皮质激素。 2)分泌到血浆中的皮质激素一方面产生相应的生理效应,另方面,当其血浆浓度达到一定水平时,又对垂体前叶和下丘脑发生作用,分别抑制ACTH和CRF的分泌,形成负反馈调节。下丘脑一垂体一肾上腺轴系统在中枢神经系统的统一调控下相互促进又相互制约,共同维持着机体的相对平衡和稳定。 2007年 四、简答题 1、简述以通道为中介的易化扩散的主要特征及通道的类型。 答:主要特征:①比自由扩散转运速率高; ②存在最大转运速率; 在一定限度内运输速率同物质浓度成正比。如超过一定限度,浓度再增加,运输也不再增加。因膜上载体蛋白的结合位点已达饱和; ③有特异性,即与特定溶质结合。这类特殊的载体蛋白主要有离子载体和通道蛋白两种类型。 门控通道的类型:门通道可以分为四类:配体门通道(ligand gated channel)、电位门通道(voltage gated channel)、环核苷酸门通道(Cyclic Nucleotide-Gated Ion Channels)和机械门通道(mechanosensitive channel)。 2、简述兴奋在神经纤维上传导的特征。 答:1.双向传导2.绝缘性3.相对不疲劳性4.生理完整性。 ((1)双向传导 在实验条件下,刺激神经纤维的任何一点,产生的动作电位均可向两端传导。但在体内,由于神经纤维总是作为反射弧的传入或传出部分,所以神经纤维上动作电位往往单方向传导。 (2)绝缘性 神经纤维由于其神经膜及髓鞘的绝缘作用,神经纤维上传导的冲动基本上不会波及到邻近纤维,谓之神经纤维传导的绝缘性。这样,在混合神经干内,传入、传出纤维各自传送相关信息而互不干扰,保证了信息传送的准确、可靠。 (3)生理完整性 神经纤维能将信息传送到远隔部位,不仅要求其结构的完整,而且必须功能正常。影响动作电位产生和传导的因素可以破坏神经纤维的生理完整性,如用冷冻或药物作用于神经纤维某一局部,破坏其生理功能的完整性时,可造成神经冲动的传导阻滞(conduction block)。在医疗实践中可以利用这一特点阻断神经的传导功能,达到医疗的目的,如采用低温麻醉和药物麻醉的方法进行手术,可以减轻病人的疼痛和痛苦。 (4)相对不疲劳性 神经纤维可以在较长时间内持续传导冲动而不容易产生疲劳。实验发现,当电刺激神经-肌肉标本的神经部分时,肌肉很快因疲劳而不再收缩;但是,当预先阻滞了神经-肌肉接头部位的信息传递而以持续高频刺激神经纤维,10小时后除去对神经-肌接头部位的阻滞,此时仍可看到肌肉的收缩。这就证明了神经纤维依然保持着正常的传导功能。) 3、简述心肌工作细胞兴奋过程中Na+通道的机能状态。 答:分为激活,失活和备用三种状态。 当膜电位处于正常静息电位水平-90mV时,Na+通道处于备用状态。这种状态下,Na+通道具有双重特性,一方面,Na+通道是关闭的;另一方面,当膜电位由静息水平去极化到阈电位水平(膜内-70mV)时,就可以被激活。Na+通道迅速开放,Na+因而得以快速跨膜内流。Na+通道激活后就立即迅速失活,此时通道关闭,Na+内流迅速终止。 (上述兴奋的产生时,都是以Na+通道能够被激活作为前提。事实上,Na+通道并不是始终处于这种可被激活的状态,它可表现为激活、失活和备用三种功能状态:而Na+通道处于其中哪一种状态,则取决于当时的膜电位以及有关的时间进程。这就是说,Na+通道的活动是电压依从性和时间依从性的。当膜电位处于正常静息电位水平-90mV时,Na+通道处于备用状态。这种状态下,Na+通道具有双重特性,一方面,Na+通道是关闭的;另一方面,当膜电位由静息水平去极化到阈电位水平(膜内-70mV)时,就可以被激活,Na+通道迅速开放,Na+因而得以快速跨膜内流。Na+通道激活后就立即迅速失活,此时通道关闭,Na+内流迅速终止。Na+通道的激活和失活,都是比较快速的过程;前者在1ms 内,后者约在几毫秒到10ms内即可完成。处于失活状态的Na+通道不仅限制了Na+的跨膜扩散,并且不能被再次激活;只有在膜电位恢复到静息电位水平时,Na+通道才重新恢复到备用状态,即恢复再兴奋的能力,这个过程称为复活。由上可见,Na+通道是否处备用状态,是该心肌细胞当时是否具有兴奋性的前提;而正常静息膜电位水平又是决定Na+通道能否处于或能否复活到备用状态的关键。Na+通道的上述特殊性状,可以解释有关心肌细胞兴奋性的一些现象。例如,当膜电位由正常静息水平(-90mV)去极化到阈电位水平(-70mV)时,Na+通道被激活,出现动作电位;而如果静息状况下膜电位为-50mV左右,即肌膜处于持续低极化状态时,就不能引起Na+通道激活,表现为兴奋性的丧失。至于Na+通道上述三种状态的实质以及膜电位是如何影响Na+通道性状的问题,目前尚未彻底阐明。) 4、长期卧床突然直立头晕眼花,其血压发生的变化和发生机制? 答:血压降低。 发生机制:当人从我为变为立位时,身体低垂部分的静脉因跨壁压增大而扩张,容纳的血量增多,故回心血量减少,血压降低。 长期卧床的病人,静脉管壁的紧张性降低,可扩张性增高,加之和下肢肌肉的收缩力量减弱,对静脉的挤压作用减少,故由平卧位突然站起来时,可因大量血液积滞在下肢,回心血量过少而发生昏厥。 5、工人大量发汗引起尿量的变化及原因? 答:引起尿量减少。 大量发汗使机体失水,血浆晶体渗透压升高,可引起抗利尿激素分泌增多,使肾对水的重吸收活动明显增强,导致尿液浓缩和尿量减少。 抗利尿激素通过改变远曲小管和集合管上皮细胞对水的通透性,从而影响水的重吸收;增加髓袢升支粗段对NaCl的主动重吸收和内髓部集合管对尿素的通透性,使髓质组织间液溶质增加,渗透浓度提高,利于尿浓缩。 6、兴奋性突触后电位的产生机理。 答:兴奋性突触后电位略称EPSP。是指由兴奋性突触的活动,在突触后神经元中所产生的去极化性质的膜电位变化。 EPSP的形成机制是兴奋性递质作用于突触后膜的相应受体,使配体门控通道(化学门控通道)开放,因此后膜对Na+和K+的通透性增大。由于Na+的内流大于K+的外流,故发生净的正离子内流,导致细胞膜的局部去极化。 7、叙述甲状腺激素分泌的调节。 答:(一)下丘脑-腺垂体对甲状腺功能的调节 甲状腺主要是通过下丘脑的促甲状腺释放、垂体的促甲状甲状之间的相互作用来实现的。下丘脑、垂体与甲状腺构成调节轴,共同调节甲状腺功能。下丘脑神经内分泌细胞分泌TRH,促进腺垂体分泌TSH。TSH是调节甲状腺分泌的主要激素。 (二)甲状腺激素对腺垂体和下丘脑的反馈性调节。血中游离T3、T4浓度的改变,可对腺垂体TSH的分泌起反馈性的调节作用。) (三)体内外各种刺激可以通过感受器,经传入神经传到中枢,促进或抑制下丘脑分泌TRH,进而再影响甲状腺素的分泌。 (四)甲状腺功能的自身调节,这是指在完全缺少TSH或TSH浓度基本不变的情况下,甲状腺自身对碘供应的多少而调节甲状腺素的分泌。 (五)甲状腺滤泡受交感神经支配,电刺激交感神经可使甲状腺激素合成增加。 (甲状腺素的调节: (一)下丘脑-腺垂体-甲状腺功能轴 下丘脑神经内分泌细胞分泌TRH,促进腺垂体分泌TSH。TSH是调节甲状腺分泌的主要激素。动物去垂体后,其血中TSH迅速消失,甲状腺吸收碘的速率下降,腺体逐渐萎缩,只靠自身调节(见后)维持最低水平的分泌。给这种动物注射TSH可以维持甲状腺的正常分泌。切断下丘脑与脑垂体门脉的联系,或损坏下丘脑促甲状腺区,均能使血中TRH含量显著下降,TSH、及甲状腺激素含量也相应降低。这说明下丘脑-腺垂体- 甲状腺间存在功能联系。 甲状腺激素在血中的浓度,经常反馈调节腺垂体分泌TSH的活动。当血中游离的甲状腺激素浓度增高时,将抑制腺垂体分泌TSH,是一种负反馈。这种反馈抑制是维持甲状腺功能稳定的重要环节。甲状腺激素分泌减少时,TSH分泌增加,促进甲状腺滤泡代偿性增大,以补充合成甲状腺激素,以供给机体的需要。 (二)体内外的其它刺激 体内外各种刺激可以通过感受器,经传入神经传到中枢,促进或抑制下丘脑分泌TRH,进而再影响甲状腺素的分泌。例如寒冷就是通过皮肤冷感受器经上述环节促进甲状腺分泌。 (三)自身调节 甲状腺功能的自身调节,这是指在完全缺少TSH或TSH浓度基本不变的情况下,甲状腺自身对碘供应的多少而调节甲状腺素的分泌。当食物中碘供应过多时,首先使甲状腺激素合成过程中碘的转运发生抑制,同时使合成过程也受到抑制,使甲状腺激素合成明显下降。如果碘量再增加时,它的抗甲状腺合成激素的效应消失,使甲状腺激素的合成增加。此外,过量的碘还有抑制甲状腺激素释放的作用。相反,外源碘供应不足时,碘转运机制将加强,甲状腺激素的合成和释放也增加,使甲状腺激素分泌不致过低。碘的这种作用原理尚不清楚。 (四)交感神经的作用 甲状腺滤泡受交感神经支配,电刺激交感神经可使甲状腺激素合成增加。) 2005年 一、 小问答题 1、 纤溶系统的组成和基本过程。 答:纤溶系统主要包括纤维蛋白溶解酶原、纤维酶、纤溶酶原激活物与纤溶抑制物。纤溶可分为纤溶酶原的激活与纤维蛋白的降解两个阶段。


99-10年药大生理学问答题详解 - 图文(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:2024-2025年中国汽车铝压铸市场监测及投资趋势预测报告 - 图文

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219