1-14 已知离散型随机变量X的分布律为
X 3 6 7 P 0.2 0.1 0.7 求:①X的分布函数 ②随机变量Y?3X?1的分布律
1-15 已知随机变量X服从标准高斯分布。求:①随机变量Y?e的概率密度?②随机变量Z?X的概率密度? 分析:①fY(y)?h'(y)?fX?h(y)?
②fY(y)?|h'1(y)|?fX[h1(y)]?|h'2(y)|?fX[h2(y)] 答案:
?lny??1??e2fY(y)??2?y??02Xy?0else?2?z?e2fZ(z)????0?2z?0else
1-16 已知随机变量X和X相互独立,概率密度分别为
12
?1?1x1?e2fX1(x1)??2?0?,x1?0,x1?0 ,
?1?1x2?e3fX2(x2)??3?0?,x2?0,x2?0
求随机变量Y?X1?X2的概率密度?
?Y1?Y?X1?X2解:设?Y?X (任意的)?21?1?1y1?1y2?e36fY1Y2?y1,y2???6?0? 求反函数,求雅克比J=-1
y1?y2?0else1??1y1?y1?3?e2y1?0?fY1?y1???e ?else?0
1-17 已知随机变量X,Y的联合分布律为
3m2ne?5P?X?m,Y?n??,m,n?0,1,2,?m!n! P?X?m?(m?0,1,2,?)求:①边缘分布律
和P?Y?n?(n?0,1,2,?)?
②条件分布律P?X?m|Y?n?和P?Y?n|X?m??
3m2ne?53me?32ne?2分析:P?X?m,Y?n????,m,n?0,1,2,?
m!n!m!n!泊松分布 P?X?k???ke??k!,k?0,1,2,?
??P?X?k??e???e???e???1k??0??kk?0k!???kk!?e?k?0 P19
??3me?3?2ne?2解:①PX?m???P?X?m,Y?n??n?1m!?n?1n!
??X?m,Y?n??2ne?2同理P?Y?n???Pn?1n! ②P?X?m,Y?n?=P?X?m??P?Y?n? 即X、Y相互独立
1-48)
(1-18 已知随机变量X,X12,?,Xn相互独立,概率密度分别为
f1(x1),f2(x2),?,fn(xn)。又随机变量
?Y1?X1??Y2?X1?X2? ??????????Yn?X1?X2???Xn证明:随机变量Y,Y,?,Y的联合概率密度为
12nfY(y1,y2,?,yn)?f1(y1)f2(y2?y1)?fn(yn?yn?1)
?Y1?X1??Y2?X1?X2??Y2?X1?X2?X3??????????Yn?1?X1?X2???Xn?1???Yn?X1?X2???Xn?1?Xn?X1?Y2?Y1?X?Y?Y?232???? ??Xn?Yn?Yn?1
1?1?J?0001?00?????00?10?110?10000?001?1
00?
因为|J|=1,故 已知随机变量
f1(x1),f2(x2),?,fn(xn)fY(y1,y2,?,yn)?fX(y1,y2?y1,?,yn?yn?1)X1,X2,?,Xn相互独立,概率密度分别为
fY(y1,y2,?,yn)?fX(y1,y2?y1,?,yn?yn?1)?f1(y1)f2(y2?y1)?fn(yn?yn?1)