不定积分培优讲义(3)

2025-11-04

14sinu?C?x?44x2?C

四、分部积分法(有时还用了换元积分法) 【例1】 求下列不定积分 (1)?xedx

(3)??3x?x?1?cosxdx

2?x(2)?xe2?2xdx

解 (1)?xedx???xde(2)?xe=?12122?2x?x?x??xe?x?2?edx??(x?1)e?2x?x?x?C

dx??12?xde2?2x??212xe1?12?e

?2xdx

2xe2?2x??12xe?2xdx??1212xe?2x??xde2e?2x?2x=?xe2?2x?xe?2x??e?2xdx??121?2x?x??2????C ?(3)??3x?x?1?cosxdx?22??3x22?x?1?dsinx

=?3x?x?1?sinx??sinxd?3x?x?1? =?3x?x?1?sinx?2??6x?1?sinxdx ??6x?1?dcosx

=?3x?x?1?sinx?22=?3x?x?1?sinx??6x?1?cosx?6?cosxdx =?3x?x?1?sinx??6x?1?cosx?6sinx?C

2【例2】 求下列不定积分 (1)?xlnxdx(n??1) (3)?arctanxdx

解 (1)?xlnxdx(n??1)?==

1n?1xn?1nn(2)?arcsinxdx

1n?1?lnxd(xn?1)

lnx?1n?1?xn?11?dx x1n?1xn?1xn?1lnx?1?n?1?2xn?1?C

1??lnx????C n?1?n?1?

(2)解一

?arcsinxdx?xarcsinx??xdarcsinx

=xarcsinx??xdx1?x2?xarcsinx?1?2d(1?x)1?x22 =xarcsinx?1?x2?C

解二 令arcsinx?t,则x?sint

?arcsinxdx??tdsint?tsint??sintdt

=tsint+cost+C=xarcsinx+(3)?arctanxdx?xarctanx?=xarctanx?1-x+C

2?xdarctanx

12?1?x12x2dx?xarctanx??d(1?x)1?x22

=xarctanx?ln(1?x)?C

2

【例3】 求下列不定积分 (1)?lnxdx

3323(2)?arcsinxdx

1322解 (1)?lnxdx?xlnx?3??xlnx??dx?xlnx?3?lnxdx

x=xlnx?3xlnx?3?x?2lnx??dx

x321=xlnx?3xlnx?6?lnxdx

=xlnx?3xlnx?6xlnx?6?x?dx

x32321=x?lnx?3lnx?6lnx?6??C

32

(2)解一

??arcsinx?22dx?x?arcsinx??2?xd?arcsinx?

2=x?arcsinx??2?2xarcsinx1?x2dx

=x?arcsinx??2?arcsinxd1?x =x?arcsinx??2?1?xarcsinx?222??21?xdarcsinx?

?

=x?arcsinx??2?1?xarcsinx??dx?

22??=x?arcsinx??21?x2arcsinx?2x?C 解二 令arcsinx?t,则x?sint

2??arcsinx?22dx??tdsint?tsint?2?tsintdt

222=tsint?2?tdcost?tsint?2tcost?2?costdt =tsint?2tcost?2sint?C

=x(arcsinx)+21-xarcsinx-2x+C 【例4】 求下列不定积分

(1)?esinbxdx (a?0,b?0) 解 (1)?esinbxdx?=

1aeaxaxax222(2)??1aeaxx?adx a?0 1a221a?sinbxde1aeaxsinbx?ba2?edsinbx

axaxsinbx?ba?e2axcosbxdx?axsinbx??cosbxde

1aeaxsinbx?baeaxcosbx?ba22?eaxsinbxdx 2?b?1axbaxax1?esinbxdx?esinbx?ecosbx?C? ?2??2aaa???eaxsinbxdx?e2ax2a?b2?asinbx?bcosbx??C

22(2)?2x?adx?xx?a?x2222?xd2x?a dxx?a2222=xx?a?222?dx?xx?a?2x?a2?x?adx?a222? 2?x?adx?xx?a?alnx?22?x?a22??C?

?x?adx?22x2x?a?22a22lnx??x?a22??C

arctaneexx【例5】 求下列不定积分 (1)?dx1

xex3(2)?dx

解 (1)?dx1xex3???1?1?exd??x?x???t1令1x?t??tedt

?t=?tde=

1xe??t?te?1x?t??edt?te?t?e?t?C

1x?e?C

(2)令e?t,则

arctaneexxx?dx??arctantt21?1?dt???arctantd????arctant?t?t??11?dt 2t1?t=?arctant????dt 2?t?t1?t?=?arctant?lnt?t11212ln?1?t21?1t???C

2x=?e?xarctane?x?xln?1?e??C

2五、其他

【例1】 设f?x?的一个原函数F?x??ln解 I??x?x?1,求I?2??xf??x?dx

FxC?xdx?f????xf??x??x?1?ln2??df?x?x??x?F? x?2xx?12lnx???2?x?x?1?C

2?【例2】 设F??x??f?x?,当x?0时,f?x?F?x??xex22?1?x?,又F?0??1,

F?x??0,求f?x? ?x?0?.

2解 2?f?x?F?x?dx?2?F?x?dF?x??F而

x?x??C1

ex?xex2?1?x?dx?????x?1??1??ex?1?x?2dx??1?x???C2

dex?1?x?dx 2?e1?x??ex2?1?x?exdx??ex2?1?x?dx?ex1?x?F2?x??1?x?C,?F?0??1,?C?0,又F?x??0

因此 F?x??ex1?x?e21?x1e2xx

12e21?x?x则 f?x??F??x??21?x1?xxsinx?xe22?1?x?32x

【例3】 设f?sinx??2,求I??x1?xf?x?dx

arcsinuu解一 令u?sinx,则sinx?2u,x?arcsinu,f?u??

则 I??arcsin1?xxdx???arcsin1?xxd?1?x???2?arcsinxd1?x

??21?xarcsinx?2?1?x?11?xdx ??21?xarcsin

解二 令x?sint,则sint2 x?2x?C

x1?x?sintcost,dx?2costsintdt

则 I??t??2sintcostdt??2?tdcost costsint ??2tcost?2?costdt??2tcost?2sint?C ??21?xarcsin

【例4】 设In?x?2x?C

?dx?x2?a2?n

?n?2正,整数,a?,求证 ?0??x?In=??2n?3?In?1? n?1222?2?n?1?a??x?a???1证In=1a2?x?a??x??x?a?2222n2dx?1a2In?1?12a2?xd?x?a22n??x2?a2?

=1a2In?1?12?n?1?a2???1? xd?n?1?x2?a2?????=1a2In?1??x???In?1? n?1222?2?n?1?a??x?a???11??=?x2?n?1?a2?n?1??2n?3?In?1???x2?a2?? ?

其他参看PPT讲义和题型小节


不定积分培优讲义(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:行百里者半九十

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219