(2)?dxx?x?1??1??1?dx?lnx?lnx?1?C ????xx?1?xx+1=ln+C
【例3】 求?2?3?5?23xxxdx
xx??2???2?1?C 解 原式=??2?5????dx?2x?5??2?3???3?ln???3?2?5???3??C =2x?ln2?ln3x
【例4】 求下列不定积分 (1)?tanxdx (2)?222dxsinxcosx22
解 (1)?tanxdx=??secx?1?dx?tanx?x?C (2)?1sinxcosx22dx??sinx?cosxsinxcosx2222dx??1??1??cos2xsin2x?dx
??=tanx-cotx+C
二、第一换元积分法
【例1】 求下列不定积分 (1)?1x(x?1)ndx(n>1,正整数) (2)?1?x?xnnn2x?3x?x?12dx
解 (1)原式=?1nx(x?1)dx??xdx??x?C
1xnn?1?1dx
=lnx?lnx?1?C?lnnxnx?1n(2)原式=??2x?1??2x?x?12dx??d?x?x?1?2x?x?12?2?dxx?x?12
=ln?x?x?1??2?21??d?x??2???3?1????x????22????22
=ln?x2?x?1??433arctan2x?13?C
【例2】 求下列不定积分 n=1,2,3,4,5,6 (1)?cosxdx (3)?sinxcosxdx (5)?secxdx
1?1?cos2x?4(1)?cosxdx???dx??24??24254(2)?cosxdx (4)?sinxcosxdx (6)?tanxdx
????1?2cos2x?cos?2x??dx
24245 ?11??1?2cos2x?1?cos4x?????dx 4?2? ?(2)?cosxdx?538x?14sin2x?22132sin4x?C ??1?sinx?dsinx?23sinx?3??1?2sin2x?sinx?dsinx
4 ?sinx?
15sinx?C
5(3)?sinxcosxdx??sinx?1?sinx?dsinx?25222??sin2x?2sinx?sinx?dsinx
46 ?2413sinx?143252sinx?517sinx?C
1?1?cos4x??1?cos2x????4?22????dx ?7(4)?sinxcosdx??sin1?2x??cos2xdx? ???1?cos2x?cos4x??cos2x??cos4x???dx ?161??1?cos2x?cos4x?cos6x?cos2x?????dx 16?2?1?1111?x?sin2x?sin4x?sin6x?sin2x?C ??16?24124?1 ? ?
(5)?secxdx?(6)?tanxdx?44??1?tanx?dtanx?tanx?213tanx?C
23??sec2x?1?dx???secx?2secx?1?dx
421??3??tanx?tanx??2tanx?x?C
3???13tanx?tanx?x?C
3【例3】 求下列不定积分 (1)?(3)?ex1?e11?edx x(2)?(4)?1e?ex?xdx
dx x1?1?e?x2dx
x分析 这四个题中均含有e.而edx?de,因而可以用凑微分的方法积分。
xx解 (1)
?1?eexdx?x?1?e1d?e?1? xxx?ln?1?e??C ?1?e?0可不加绝对值符号?. x(2) ?=?11e?ex?xdx??ee2xx?1dx
?e?x2de ?1xx=arctane?C.
(3)解一 换元积分法 令1?e?u,则x?ln(u?1),
dx?1x1u?1du
11??1??du ???u?1u??1?edx?x?u(u?1)du?=lnu?1?lnu?C
回代lnexx1+e+C
=x-ln(1+e)+C.
x
解二 凑微分
?1?e=x?1dx?x?1?e?e1?exxxxx?edx???1?x1?e???dx ??d?1?e1?ex?
=x-ln(1+ex)+C.
(4)分析 利用(1)和(3)对题(4)先化简.再凑微分 解
?11?1?e?x2dx??1?e?exx?1?e?x22dx
=?1?edx?x?1?1?e?xxd?1?ex?
由题(3)x?ln?1?e??11?ex?C.
【例4】 求下列不定积分 (1)?dx13
xex2(2)?(xlnx)2(lnx?1)dx
??1???exd????ex?C
?x??11解 (1)?dx1xex323(2)?(xlnx)2(lnx?1)dx?三、第二换元积分法. 【例1】 求?dxx?23?(xlnx)2d(xlnx)?255(xlnx)2?C
dxx?3 x6tdt35解
???令x?t6x?t?t2?6?t3t?1dt?6??t3?1??1t?1dt
=6??t?t?1?1?32?dt?2t?3t?6t?6lnt?1?C t?1?=2x?33x?66x?6ln【例2】 求下列不定积 (1)?dx32?6x?1?C
?
?1?x?2(2)?a?xdx (a>0)
22
(3)?dx?x2?a2?3/2 (a>0)
(4)?dxx2
x?42解 (1)令x=sint,则
?dx?1?x?232??costdtcost3??sectdt?tant?C
2=x1-x2+C
(2)令x=asint,则
?a?xdx?22?(acost)(acostdt)?a22?(1?cos2t)dt
22a骣1a?=t+sin2t÷+C=(t+sintcost)+C ÷?÷?2桫222骣222a?xxa-x÷1ax22÷?arcsin+g+C=xa-x+arcsin+C =÷?÷÷2?aaa22a?桫(3)令x=atant,则dx=asec2tdt ?dx?xa2?ax2?32??asectdtasect332?1a2?costdt?1a2sint?C =2a?x22?C
(4)令x=2secu,则dx=2secugtanudu,代入积分式得
?dxx2x?42??2secu?tanu4secu?4secu?422du
===
14141?sec1secu?tanu2u?tanudu
?secudu
cosudu ?4

