指名学生回答。板书:
圆柱的表面积=圆柱的侧面积+两个底面面积 圆柱的侧面积=圆柱的底面周长×高 【新课讲授】 教学例4。
(1)出示例4。学生读题,明确已知条件:已知圆柱的高和底面直径,求表面积。
(2)求厨师帽所用的材料,需要注意:厨师帽没有下底面,说明它只有一个底面。
(3)指定两名学生板演,其他学生独立进行计算。教师巡视,注意看学生所算最后的得数是否正确。
指导学生做完后集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整十平方厘米,省略的个位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。
(4)巩固练习。
①教材第22页“做一做”第1题。组织学生独立完成。
②教材第22页第2题。请三名学生板演,其余同学做在草稿本上。 答案:①第22页“做一做”第1题:1.12m2,100.48dm2 ②第22页“做一做”第2题:376.8cm2 【课堂作业】
完成教材第23~24页练习四的第7~12题。
第7、8题,学生独立作业,老师巡视,个别不会的加以指导。
第9题,提醒学生注意是上下底面分别留出了78.5cm2的口,应减去的部分是78.5×2=157(cm2)。
第10题,先让学生明确计算步骤,再分步列出算式,最后计算水桶的用料。 第11题,教师应先用教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体的表面积与圆柱的侧面积之和减去圆柱的一个底面积。提醒学生注意根据要求将计算结果化
31
成以平方米为单位的数,并根据实际情况保留近似数。
第12题,是已知圆柱的侧面积和底面半径,求圆柱的高,部分学生有困难。教师辅导时可以提示学生列方程解答。
答案:
第8题:花布:3.14×18×80=4521.6(cm2) 黄布:3.14×(18÷2)2×2=508.68(cm2)
第9题:3.14×20×30+3.14×(20÷2)2×2-78.5×2=2355(cm2) 第10题:3.14×(12×
33)×12+3.14×(12×÷2)2=402.705(dm2) 44第11题:(1)12×12×2+16×12×4+3.14×12×55-3.14×(12÷2)2 =3015.36cm2≈0.31(m2) (2)50×0.31×30=465(元)
第12题:188.4÷(2×3.14×2)=15(dm) 【课堂小结】
通过这节课的学习,你有哪些收获? 【课后作业】
完成练习册中本课时的练习。
第3课时 圆柱的表面积(2)
圆柱的表面积=圆柱的侧面积+两个底面面积
实际用料>计算用料 “进一法”→近似数
第4课时 圆柱的体积(1)
【教学内容】
32
圆柱的体积(教材第25页例5)。 【教学目标】
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
【重点难点】
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。 2.理解圆柱体积公式的推导过程。 【教学准备】
推导圆柱体积公式的圆柱教具一套。
【复习导入】 1.口头回答。
(1)什么叫体积?怎样求长方体的体积? (2)怎样求圆的面积?圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。 【新课讲授】
1.教学圆柱体积公式的推导。 (1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。 (3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?
33
学生:近似的长方体。
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢? 学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想: ①如果把圆柱的底面平均分成32份,拼成的形状是怎样的? ②如果把圆柱的底面平均分成64份,拼成的形状是怎样的? ③如果把圆柱的底面平均分成128份,拼成的形状是怎样的? (5)启发学生说出:通过以上的观察,发现了什么? ①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算? ②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
教师板书:
2.教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是50cm2,高是2.1m。它的体积是多少?
(2)指名学生分别回答下面的问题:
34
①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。 (3)出示下面几种解答方案,让学生判断哪个是正确的。 ①50×2.1=105(cm3)答:它的体积是105cm3。 ②2.1m=210cm 50×210=10500(cm3) 答:它的体积是10500cm3。
③50cm2=0.5m2 0.5×2.1=1.05(m3) 答:它的体积是1.05m3。 ④50cm2=0.005m2 0.005×2.1=0.0105(m3) 答:它的体积是0.0105m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。 【课堂作业】
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1. 6750(cm3) 2. 7.85m3
第1题:(从左往右) 3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3) 3.14×(8÷2)2×8=401.92(cm3) 【课堂小结】
通过这节课的学习,你有什么收获?你有什么感受?
35