X( 2, 6) 0.000000 189.6000 X( 2, 7) 0.000000 247.2000 X( 2, 8) 0.000000 303.6000 X( 2, 9) 210.0000 141.6000 X( 2, 10) 0.000000 331.2000 X( 3, 1) 0.000000 200.4000 X( 3, 2) 1200.000 146.4000 X( 3, 3) 0.000000 268.8000 X( 3, 4) 0.000000 398.4000 X( 3, 5) 150.0000 147.6000 X( 3, 6) 200.0000 90.00000 X( 3, 7) 0.000000 404.4000 X( 3, 8) 220.0000 174.0000 X( 3, 9) 0.000000 196.8000 X( 3, 10) 300.0000 111.6000
Row Slack or Surplus Dual Price OBJ 720096.0 -1.000000 2 0.000000 0.000000 3 0.000000 0.000000 4 0.000000 0.000000 5 0.000000 0.000000 6 0.000000 0.000000 7 0.000000 0.000000 8 0.000000 0.000000 9 0.000000 0.000000 10 0.000000 0.000000 11 0.000000 0.000000 12 2000.000 0.000000 13 0.000000 0.000000 14 0.000000 0.000000 15 630.0000 0.000000 16 0.000000 0.000000 17 0.000000 0.000000 18 170.0000 0.000000 19 0.000000 0.000000 20 0.000000 0.000000 21 0.000000 0.000000 22 0.000000 0.000000 23 0.000000 0.000000 24 600.0000 0.000000 25 0.000000 0.000000 26 0.000000 0.000000 27 0.000000 0.000000
31
28 0.000000 0.000000 29 0.000000 0.000000 30 210.0000 0.000000 31 0.000000 0.000000 32 0.000000 0.000000 33 1200.000 0.000000 34 0.000000 0.000000 35 0.000000 0.000000 36 150.0000 0.000000 37 200.0000 0.000000 38 0.000000 0.000000 39 220.0000 0.000000 40 0.000000 0.000000 41 300.0000 0.000000
问题三中求运输车辆的最少量数的代码及结果: min=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10; t=1896;
t/6*x1>=2000; t/6.47*x2>=630; t/7.2*x3>=170; t/4.32*x4>=600; t/5.87*x5>=210; t/6.08*x6>=1200; t/6.92*x7>=150; t/5*x8>=200; t/7.8*x9>=220; t/5.72*x10>=300;
@gin(x1);@gin(x2);@gin(x3);@gin(x4);@gin(x5); @gin(x6);@gin(x7);@gin(x8);@gin(x9);@gin(x10);
Global optimal solution found.
Objective value: 22.00000 Objective bound: 22.00000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0
Variable Value Reduced Cost X1 7.000000 1.000000 X2 3.000000 1.000000 X3 1.000000 1.000000
32
X4 2.000000 1.000000 X5 1.000000 1.000000 X6 4.000000 1.000000 X7 1.000000 1.000000 X8 1.000000 1.000000 X9 1.000000 1.000000 X10 1.000000 1.000000 T 1896.000 0.000000
Row Slack or Surplus Dual Price 1 22.00000 -1.000000 2 0.000000 0.000000 3 212.0000 0.000000 4 249.1345 0.000000 5 93.33333 0.000000 6 277.7778 0.000000 7 112.9983 0.000000 8 47.36842 0.000000 9 123.9884 0.000000 10 179.2000 0.000000 11 23.07692 0.000000 12 31.46853 0.000000
附录5:
问题四中求最少运输车辆的代码及结果:
min=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13; t<=120;
t/7.08*x1+t/8.36*x2+t/15.82*x3+t/8.4*x4+t/4.88*x5+t/13.78*x6+t/12.36*x7+ t/7.64*x8+t/15.5*x9+t/10.34*x10+t/16.42*x11+t/8.68*x12+t/11.82*x13>=1000;
@floor(t/24)*40+360-t/7.08*x1>=0; @floor(t/24)*30+600-t/8.36*x2>=0; @floor(t/24)*20+500-t/15.82*x3>=0; 200-t/8.4*x4>=0; 270-t/4.88*x5>=0; 450-t/13.78*x6>=0; 800-t/12.36*x7>=0; 230-t/7.64*x8>=0; 280-t/15.5*x9>=0; 390-t/10.34*x10>=0; 500-t/16.42*x11>=0; 2000-t/8.68*x12>=0; 1800-t/11.82*x13>=0;
33
@gin(x1);@gin(x2);@gin(x3);@gin(x4);@gin(x5);@gin(x6);@gin(x7); @gin(x8);@gin(x9);@gin(x10);@gin(x11);@gin(x12);@gin(x13); end
Local optimal solution found.
Objective value: 56.00000 Objective bound: 56.00000 Infeasibilities: 0.1697056E-03 Extended solver steps: 4 Total solver iterations: 540
Variable Value Reduced Cost X1 31.00000 1.000000 X2 0.000000 1.000000 X3 0.000000 1.000000 X4 0.000000 1.000000 X5 11.00000 1.000000 X6 0.000000 1.000000 X7 0.000000 1.000000 X8 14.00000 1.000000 X9 0.000000 1.000000 X10 0.000000 1.000000 X11 0.000000 1.000000 X12 0.000000 1.000000 X13 0.000000 1.000000 T 118.7613 0.000000
Row Slack or Surplus Dual Price 1 56.00000 -1.000000 2 1.238671 0.000000 3 5.325359 0.000000 4 -0.1697056E-03 0.000000 5 720.0000 0.000000 6 580.0000 0.000000 7 200.0000 0.000000 8 2.300283 0.000000 9 450.0000 0.000000 10 800.0000 0.000000 11 12.37453 0.000000 12 280.0000 0.000000 13 390.0000 0.000000 14 500.0000 0.000000
34
15 2000.000 0.000000 16 1800.000 0.000000
35