27R2Tc227?8.3142?405.626?2 a???0.4253Pa?m?mol664Pc64?11.28?10b?RTc8.314?405.6??3.737?10?5m3?mol?1 68Pc8?11.28?10RTa8.314?448.60.4253?2???17.65MPa 2?5?5V?bV?9.458?3.737??10?3.737?10?P?(3) Redlich-Kwang方程
R2Tc2.58.3142?405.62.5a?0.42748?0.42748?8.679Pa?m6?K0.5?mol?2 6Pc11.28?10b?0.08664P?RTc8.314?405.6?0.08664?2.59?10?5m3?mol?1 6Pc11.28?10RTa8.314?448.68.679?0.5???18.34MPa ?50.5?5?5V?bTV?V?b??9.458?2.59??10448.6?9.458?10?9.458?2.59??10(4) Peng-Robinson方程
∵Tr?TTc?448.6405.6?1.106
∴k?0.3746?1.54226??0.26992?2?0.3746?1.54226?0.25?0.26992?0.252?0.7433
0.5???1?0.7433??1?1.1060.5???0.9247 ??T???1?k1?T??r????22R2Tc28.3142?405.62a?T??ac??T??0.45724??T??0.45724??0.9247?0.4262Pa?m6?mol?2 6Pc11.28?10b?0.07780RTc8.314?405.6?0.07780??2.326?10?5m3?mol?1 6Pc11.28?10∴P?a?T?RT ?V?bV?V?b??b?V?b?8.314?448.60.4262??9.458?2.326??10?59.458??9.458?2.326??10?10?2.326??9.458?2.326??10?10?MPa0 ?19.0(5) 普遍化关系式
∵ Vr?VVc?9.458?10?57.25?10?5?1.305<2 适用普压法,迭代进行计
算,方法同1-1(3)
2-6.试计算含有30%(摩尔分数)氮气(1)和70%(摩尔分数)正丁烷(2)气体混合物7g,在188℃、6.888MPa条件下的体积。已知B11=14cm3/mol,B22=-265cm3/mol,B12=-9.5cm3/mol。
2解:Bm?y12B11?2y1y2B12?y2B22
?0.32?14?2?0.3?0.7???9.5??0.72???265???132.58cm3/mol
Zm?1?BmPPV?→V(摩尔体积)=4.24×10-4m3/mol RTRT假设气体混合物总的摩尔数为n,则 0.3n×28+0.7n×58=7→n=0.1429mol
∴V= n×V(摩尔体积)=0.1429×4.24×10-4=60.57 cm3
2-8.试用R-K方程和SRK方程计算273K、101.3MPa下氮的压缩因子。已知实验值为2.0685 解:适用EOS的普遍化形式
查附录二得NH3的临界参数:Tc=126.2K Pc=3.394MPa ω=0.04
(1)R-K方程的普遍化
R2Tc2.58.3142?126.22.5a?0.42748?0.42748?1.5577Pa?m6?K0.5?mol?2 6Pc3.394?10b?0.08664A?aPR2T2.5RTc8.314?126.2?0.08664?2.678?10?5m3?mol?1 6Pc3.394?10
B?bP RTAa1.5577???1.551 BbRT1.52.678?10?5?8.314?2731.5BbbP2.678?10?5?101.3?1061.1952??∴h??? ①
ZVZRTZ?8.314?273ZZ?1A?h?1?h?????1.551??? ② 1?hB?1?h?1?h?1?h?①、②两式联立,迭代求解压缩因子Z (2)SRK方程的普遍化
Tr?TTc?273126.2?2.163m?0.480?1.574??0.176?2?0.480?1.574?0.04?0.176?0.042?0.5427
??T??2211?1?m?1?Tr0.5????1?0.5427??1?2.1630.5???0.2563 ??Tr?2.163?R2Tc28.3142?126.22.560.5?2 a?0.42748???T??0.42748?0.2563?0.3992Pa?m?K?mol6Pc3.394?10b?0.08664RTc8.314?126.2?53?1 ?0.08664?2.678?10m?mol6Pc3.394?10Aa0.3992???0.3975 BbRT1.52.678?10?5?8.314?2731.5BbbP2.678?10?5?101.3?1061.1952??∴h??? ①
ZVZRTZ?8.314?273ZZ?1A?h?1?h?????0.3975??? ② 1?hB?1?h?1?h1?h??①、②两式联立,迭代求解压缩因子Z 第三章
3-1. 物质的体积膨胀系数?和等温压缩系数k的定义分别为:
??1??V???V??T?P?V?。试导出服从Vander Waals状态方程的?和k的表,k??1???V??P?T达式。
解:Van der waals 方程P??z?由Z=f(x,y)的性质???RTa?2V?bV
?T??P???V??????????P??V???TP??T? ???1?V??x???y?????????1得 ??x?y??y?z??z?x又
2aRT??P?????23??V?TV?V?b?
R ??P??????T?VV?b所以
?2aRT???V?V?b ????1?3??2???V?b???V???T?PR?RV3?V?b???V????2??T?PRTV3?2a?V?b?
故
RV2?V?b?1??V??????V??T?PRTV3?2a?V?b?22
V2?V?b?1??V?k?????V??P?TRTV3?2a?V?b?23-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45MPa,温度为93℃,反抗一恒定的外压力3.45 MPa而等温膨胀,直到两倍于其初始容积为止,试计算此过程之?U、?H、?S、?A、?G、?TdS、?pdV、Q和W。
解:理想气体等温过程,?U=0、?H=0 ∴ Q=-W=?pdV??VpdV??V1V22V11RTdV?RTln2=2109.2 J/mol V∴ W=-2109.2 J/mol 又
dS?CPdT??V????dP T??T?P 理想气体等温膨胀过程dT=0、
R??V?? ????T?PP∴ dS??Rd PPS21∴ ?S??dS??R?dlnP??RlnPP=5.763J/(mol·K) P?Rln2SP211P2 ?A??U?T?S=-366×5.763=-2109.26 J/(mol·K)
?G??H?T?S??A=-2109.26 J/(mol·K)
K) ?TdS?T?S??A=-2109.26 J/(mol·
?pdV??pdV??V1V22V1V1RTdV?RTln2=2109.2 J/mol V3-3. 试求算1kmol氮气在压力为10.13MPa、温度为773K下的内能、
焓、熵、CV、Cp和自由焓之值。假设氮气服从理想气体定律。已知: (1)在
0.1013 MPa
时氮的Cp与温度的关系为
Cp?27.22?0.004187TJ/?mol?K?;
(2)假定在0℃及0.1013 MPa时氮的焓为零;
(3)在298K及0.1013 MPa时氮的熵为191.76J/(mol·K)。 3-4. 设氯在27℃、0.1 MPa下的焓、熵值为零,试求227℃、10 MPa下氯的焓、熵值。已知氯在理想气体状态下的定压摩尔热容为
?3?62Cig?31.696?10.144?10T?4.038?10TJ/?mol?K? p解:分析热力学过程
300K,0.1 MPa 真实气体 H=0,S=0
10 MPa ????? 500K,
真实气体?H、?S -H1R H2R
-S1R S2R
300K,0.1 MPa 理想气体
??????H1、?S1
500K,10 MPa 理想气体
查附录二得氯的临界参数为:Tc=417K、Pc=7.701MPa、ω=0.073 ∴(1)300K、0.1MPa的真实气体转换为理想气体的剩余焓和剩余熵 Tr= T1/ Tc=300/417=0.719 Pr= P1/ Pc=0.1/7.701=0.013—利用普维法计算
0.422dB0B?0.083?1.6??0.6324?0.675Tr2.6?1.592Tr dTr
0