得△ADF是等边三角形,证明△BAD≌△CAF,可得结论. 【解答】证明:(1)连接OD, ∵⊙O是等边三角形ABC的外接圆, ∴∠OAC=30°,∠BCA=60°, ∵AE∥BC,
∴∠EAC=∠BCA=60°,
∴∠OAE=∠OAC+∠EAC=30°+60°=90°, ∴AE是⊙O的切线;
(2)∵△ABC是等边三角形, ∴AB=AC,∠BAC=∠ABC=60°, ∵A、B、C、D四点共圆, ∴∠ADF=∠ABC=60°, ∵AD=DF,
∴△ADF是等边三角形, ∴AD=AF,∠DAF=60°,
∴∠BAC+∠CAD=∠DAF+∠CAD, 即∠BAF=∠CAF,
在△BAD和△CAF中, ∵
,
∴△BAD≌△CAF, ∴BD=CF.
【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.
七、(本大题2个小题,每小题10分,满分20分)
25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3. (1)求该二次函数的解析式;
(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;
(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.
【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;
(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组
得N(t,t),
接着利用三角形面积公式,利用S△AMN=S△AOM﹣S△NOM得到S△AMN=?4?t﹣?t?t,然后根据二次函数的性质解决问题;
(3)设Q(m,m2﹣m),根据相似三角形的判定方法,当∽△COA,则|m2﹣m|=2|m|;当
=
=
时,△PQO
时,△PQO∽△CAO,则|m2﹣
m|=|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标. 【解答】解:(1)∵抛物线过原点,对称轴是直线x=3, ∴B点坐标为(6,0),
设抛物线解析式为y=ax(x﹣6),
把A(8,4)代入得a?8?2=4,解得a=, ∴抛物线解析式为y=x(x﹣6),即y=x2﹣x; (2)设M(t,0),
易得直线OA的解析式为y=x, 设直线AB的解析式为y=kx+b, 把B(6,0),A(8,4)代入得∴直线AB的解析式为y=2x﹣12, ∵MN∥AB,
∴设直线MN的解析式为y=2x+n,
把M(t,0)代入得2t+n=0,解得n=﹣2t, ∴直线MN的解析式为y=2x﹣2t,
,解得
,
解方程组得,则N(t,t),
∴S△AMN=S△AOM﹣S△NOM =?4?t﹣?t?t =﹣t2+2t
=﹣(t﹣3)2+3,
当t=3时,S△AMN有最大值3,此时M点坐标为(3,0); (3)设Q(m,m2﹣m), ∵∠OPQ=∠ACO, ∴当
=
时,△PQO∽△COA,即
=
,
∴PQ=2PO,即|m2﹣m|=2|m|,
解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28); 解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4); ∴当
=
时,△PQO∽△CAO,即
=
,
∴PQ=PO,即|m2﹣m|=|m|,
解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),
解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1); 综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).
【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.
26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.
(1)如图1,当M在线段BO上时,求证:MO=NO;
(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB; (3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC?AC. 【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出
∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;
(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;
(3)设CE=a,进而表示出EN=CE=a,CN=据勾股定理得,AC=
(a+b),
a,设DE=b,进而表示AD=a+b,根
同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出AC=
,进而得出a=
b,AN=AC﹣CN=
b,即可表示出CN=
b,
b,即可得出结论.
【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O, ∴OD=OA,∠AOM=∠DON=90°, ∴∠OND+∠ODN=90°, ∵∠ANH=∠OND, ∴∠ANH+∠ODN=90°, ∵DH⊥AE, ∴∠DHM=90°, ∴∠ANH+∠OAM=90°, ∴∠ODN=∠OAM, ∴△DON≌△AOM, ∴OM=ON;
(2)连接MN, ∵EN∥BD,
∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD, ∴EN=CN,同(1)的方法得,OM=ON, ∵OD=OD, ∴DM=CN=EN, ∵EN∥DM,
∴四边形DENM是平行四边形, ∵DN⊥AE,
∴?DENM是菱形, ∴DE=EN, ∴∠EDN=∠END, ∵EN∥BD, ∴∠END=∠BDN, ∴∠EDN=∠BDN, ∵∠BDC=45°, ∴∠BDN=22.5°, ∵∠AHD=90°,
∴∠AMB=∠DME=90°﹣∠BDN=67.5°, ∵∠ABM=45°,
∴∠BAM=67.5°=∠AMB, ∴BM=AB;
(3)设CE=a(a>0) ∵EN⊥CD, ∴∠CEN=90°, ∵∠ACD=45°, ∴∠CNE=45°=∠ACD, ∴EN=CE=a, ∴CN=
a,
设DE=b(b>0), ∴AD=CD=DE+CE=a+b, 根据勾股定理得,AC=
AD=
(a+b),
同(1)的方法得,∠OAM=∠ODN, ∵∠OAD=∠ODC=45°,
∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°, ∴△DEN∽△ADE, ∴
,
∴∴a=∴CN=
,
b(已舍去不符合题意的) a=
b,AC=b,
b?
b=2b2
(a+b)=
b,
∴AN=AC﹣CN=