湖南省常德市2024年中考数学试题及答案解析(word版)(4)

2025-05-01

得△ADF是等边三角形,证明△BAD≌△CAF,可得结论. 【解答】证明:(1)连接OD, ∵⊙O是等边三角形ABC的外接圆, ∴∠OAC=30°,∠BCA=60°, ∵AE∥BC,

∴∠EAC=∠BCA=60°,

∴∠OAE=∠OAC+∠EAC=30°+60°=90°, ∴AE是⊙O的切线;

(2)∵△ABC是等边三角形, ∴AB=AC,∠BAC=∠ABC=60°, ∵A、B、C、D四点共圆, ∴∠ADF=∠ABC=60°, ∵AD=DF,

∴△ADF是等边三角形, ∴AD=AF,∠DAF=60°,

∴∠BAC+∠CAD=∠DAF+∠CAD, 即∠BAF=∠CAF,

在△BAD和△CAF中, ∵

∴△BAD≌△CAF, ∴BD=CF.

【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.

七、(本大题2个小题,每小题10分,满分20分)

25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3. (1)求该二次函数的解析式;

(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;

(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.

【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;

(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组

得N(t,t),

接着利用三角形面积公式,利用S△AMN=S△AOM﹣S△NOM得到S△AMN=?4?t﹣?t?t,然后根据二次函数的性质解决问题;

(3)设Q(m,m2﹣m),根据相似三角形的判定方法,当∽△COA,则|m2﹣m|=2|m|;当

=

=

时,△PQO

时,△PQO∽△CAO,则|m2﹣

m|=|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标. 【解答】解:(1)∵抛物线过原点,对称轴是直线x=3, ∴B点坐标为(6,0),

设抛物线解析式为y=ax(x﹣6),

把A(8,4)代入得a?8?2=4,解得a=, ∴抛物线解析式为y=x(x﹣6),即y=x2﹣x; (2)设M(t,0),

易得直线OA的解析式为y=x, 设直线AB的解析式为y=kx+b, 把B(6,0),A(8,4)代入得∴直线AB的解析式为y=2x﹣12, ∵MN∥AB,

∴设直线MN的解析式为y=2x+n,

把M(t,0)代入得2t+n=0,解得n=﹣2t, ∴直线MN的解析式为y=2x﹣2t,

,解得

解方程组得,则N(t,t),

∴S△AMN=S△AOM﹣S△NOM =?4?t﹣?t?t =﹣t2+2t

=﹣(t﹣3)2+3,

当t=3时,S△AMN有最大值3,此时M点坐标为(3,0); (3)设Q(m,m2﹣m), ∵∠OPQ=∠ACO, ∴当

=

时,△PQO∽△COA,即

=

∴PQ=2PO,即|m2﹣m|=2|m|,

解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28); 解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4); ∴当

=

时,△PQO∽△CAO,即

=

∴PQ=PO,即|m2﹣m|=|m|,

解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),

解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1); 综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).

【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.

26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.

(1)如图1,当M在线段BO上时,求证:MO=NO;

(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB; (3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC?AC. 【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出

∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;

(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;

(3)设CE=a,进而表示出EN=CE=a,CN=据勾股定理得,AC=

(a+b),

a,设DE=b,进而表示AD=a+b,根

同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出AC=

,进而得出a=

b,AN=AC﹣CN=

b,即可表示出CN=

b,

b,即可得出结论.

【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O, ∴OD=OA,∠AOM=∠DON=90°, ∴∠OND+∠ODN=90°, ∵∠ANH=∠OND, ∴∠ANH+∠ODN=90°, ∵DH⊥AE, ∴∠DHM=90°, ∴∠ANH+∠OAM=90°, ∴∠ODN=∠OAM, ∴△DON≌△AOM, ∴OM=ON;

(2)连接MN, ∵EN∥BD,

∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD, ∴EN=CN,同(1)的方法得,OM=ON, ∵OD=OD, ∴DM=CN=EN, ∵EN∥DM,

∴四边形DENM是平行四边形, ∵DN⊥AE,

∴?DENM是菱形, ∴DE=EN, ∴∠EDN=∠END, ∵EN∥BD, ∴∠END=∠BDN, ∴∠EDN=∠BDN, ∵∠BDC=45°, ∴∠BDN=22.5°, ∵∠AHD=90°,

∴∠AMB=∠DME=90°﹣∠BDN=67.5°, ∵∠ABM=45°,

∴∠BAM=67.5°=∠AMB, ∴BM=AB;

(3)设CE=a(a>0) ∵EN⊥CD, ∴∠CEN=90°, ∵∠ACD=45°, ∴∠CNE=45°=∠ACD, ∴EN=CE=a, ∴CN=

a,

设DE=b(b>0), ∴AD=CD=DE+CE=a+b, 根据勾股定理得,AC=

AD=

(a+b),

同(1)的方法得,∠OAM=∠ODN, ∵∠OAD=∠ODC=45°,

∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°, ∴△DEN∽△ADE, ∴

∴∴a=∴CN=

b(已舍去不符合题意的) a=

b,AC=b,

b?

b=2b2

(a+b)=

b,

∴AN=AC﹣CN=

湖南省常德市2024年中考数学试题及答案解析(word版)(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:中考数学常考易错点:4-8《解直角三角形》

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219