①┐(?x)P(x) P(附加前提) ②( ?x)┐P(x) T①E ③┐P(c) ES② ④(?x)(P(x)∨Q(x)) P ⑤P(c)∨Q(c) ES④ ⑥Q(c) T③⑤I ⑦( ?x) Q(x) EG⑥ ⑧┐(?x)P(x) →(?x)Q(x) CP (3)
解:a)设R(x):x是实数。Q(x):x是有理数。I(x):x是整数。
本题符号化为:
(?x)(Q(x) →R(x)) ∧(?x)(Q(x) ∧I(x))?? (?x)(R(x) ∧I(x)) ①(?x)(Q(x) ∧I(x)) P ②Q(c) ∧I(c) ES① ③(?x)(Q(x) →R(x)) P ④Q(c) →R(c) US③ ⑤Q(c) T②I ⑥ R(c) T④⑤I ⑦I(c) T②I ⑧R(c)∧I(c) T⑥⑦I ⑨(?x)(R(x) ∧I(x)) EG⑧
b)设P(x):x喜欢步行。Q(x):x喜欢乘汽车。R(x):x喜欢骑自行车 本题符号化为:
(?x)(P(x) →┐Q(x)), (?x)(Q(x) ∨R(x)) , (?x) ┐R(x)?? (?x) ┐P(x) ①(?x) ┐R(x) P ②┐R (c) ES① ③(?x)(Q(x) ∨R(x)) P ④Q(c) ∨R(c) US③ ⑤Q(c) T②④I ⑥ (?x)(P(x) →┐Q(x)) P ⑦P(c) →┐Q(c) US⑥
⑧┐P (c) T⑤⑦I ⑨(?x) ┐P(x) EG⑧
c) 每个大学生不是文科学生就是理工科学生,有的大学生是优等生,小张不是理工科学生,但他是优等生,因而如果小张是大学生,他就是文科学生。 设G(x):x是大学生。L(x):x是文科学生。P(x):x是理工科学生。 S(x):x是优秀生。c:小张。 本题符号化为:
(?x)(G(x) →L(x)∨P(x)), (?x)(G(x) ∧ S(x)), ┐P (c) , S(c) ? G(c) →L(c) ①G(c) P(附加前提) ②(?x)(G(x) →L(x)∨P(x)) P ③G(c) →L(c)∨P(c) US② ④L(c)∨P(c) T①③I ⑤┐P (c) P ⑥ L(c) T④⑤I ⑦G(c) →L(c) CP
注意:本题推证过程中未用到前提(?x)(G(x) ∧ S(x))以及S(c)。主要是S(x):x是优秀生,这个条件与其他前提的联系对证明结论没有影响,因S(x)与其他前提不矛盾,故本题的推证
仍是有效的。
3-5.1 列出所有从X={a,b,c}到Y={s}的关系。 解:Z1={} Z2={} Z3={
,L和D刀均定义于{1,2,3,6},分别写出L和D的所有元素并求出L∩D.
解:L={<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>} D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>} L∩D= {<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>} 3-5.5对下列每一式,给出A上的二元关系,试给出关系图: a){
证明 a)设S为传递的,若<x,z>∈S○S,则存在某个y∈X,使得<x,y
>∈S,且<y,z>∈S。 若S是传递的,<x,z>∈S,所以(S○S)?S。 反之,设(S○S)?S ,假定<x,y>∈S且<y,z>∈S,则<x,z>∈S○S。因为(S○S)?S,故<x,z>∈S,得到S是传递的。 b)设S是自反的,令<x,y>∈IX,则x=y。但<x,x>∈S,因此<x,y>=<x,x>∈S,得IX?S。 反之,令IX?S,设任意x∈X,<x,x>∈IX,故<x,x>∈S,因此S是自反的。 c)设S是反对称的。假定<x,y>∈S∩Sc,则 <x,y>∈S∧<x,y>∈Sc?<x,y>∈S∧<y,x>∈S 因为S是反对称的,故x=y, 所以<x,y>=<x,x>∈IX,即S∩Sc?IX。 反之,若S∩Sc?IX,设<x,y>∈S且<y,x>∈S,则 <x,y>∈S∧<x,y>∈Sc ?<x,y>∈S∩Sc ?<x,y>∈IX 故x=y,即S是反对称的。 3-7.3 设S为X上的关系,证明若S是自反和传递的,则S○S=S,其逆为真吗 ? 证明 若S是X上传递关系,由习题3-7.2a)可知(S○S)?S, 令<x,y>∈S,根据自反性,必有<x,x>∈S,因此有<x,y>∈S○S,即S?S○S。得到 S=S○S. 这个定理的逆不真。例如X={1,2,3},S={<1,2>,<2,2>,<1,1>},3-8.1 根据图3-8.1中的有向图,写出邻接矩阵和关系R,并求出R的自反闭包和对称闭包。 解 a M1 1 0 R= 0 0 1 b c 0 1 0 图3-8.1 R={<a,a>,<a,b>,<b,c>,<c,b>= r(R)= R∪IX ={<a,a>,<b,b>,<c,c>,<a,b>,<b,c>,<c,b>= s(R)= R∪RC={<a,a>,<a,b>,<b,a>,<b,c>,<c,b>} 3-8.2 设集合A={a,b,c,d}A上的关系 R={<a,b>,<b,a>,<b,c>,<c,d>} a) 用矩阵运算和作图方法求出R的自反、对称、传递闭包; b) 用Warshall算法,求出R的传递闭包。 解 a) 0 1 0 0 MR= 1 0 1 0 0 0 0 1 0 0 0 0 R的关系图如图所示。 a b d c M0 1 0 0 1 0 0 0 1 1 0 0 R+MIA= 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 + 0 0 1 0 = 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 r(R)= R∪IA ={<a,a>,<a,b>,<b,a>,<b,b>,<b,c>,<c,c>,<c,d>,<d,d>}(图(a)) a b d c 图(a) 0 1 0 0 0 1 0 0 0 1 0 0 MR+MRc= 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 + 0 1 0 0 = 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0
3-10.1 设R和R′是集合A上的等价关系,用例子说明:R∪R′不一定是等价关系。 证明 设 A={1,2,3},S=R∪R′ R={<1,1>,<2,2>,<3,3>,<3,1>,<1,3>} R′={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>} 则R∪R′={<1,1>,<2,2>,<3,3>,<3,1>,<1,3>,<3,2>,<2,3>} 因为如<2,3>∈S∧<3,1>∈S,但<2,1>?S,故R∪R′不是传递的,即R∪R′不是A上的等价关系。 3-10.2 试问由4个元素组成的有限集上所有等价关系的个数为多少? 解 因为集合X上的等价关系与X的划分是一一对应的,所以4个元素的有限集上等价关系的数目,与4个元素集合进行划分的数目是相同的,由习题3-9.1可知共有15个不同的等价关系。 3-10.3 给定集合S={1,2,3,4,5},找出S上的等价关系R,此关系R能产生划分{{1,2},{3},{4,5}},并画出关系图。 解 我们可用如下方法产生一个等价关系: R1={1,2}×{1,2}={<1,1>,<1,2>,<2,1>,<2,2>} R2={3}×{3}={<3,3>} R3={4,5}×{4,5}={<4,4>,<4,5>,<5,4>,<5,5>} R= R1∪R2∪R3={<1,1>,<1,2>,<2,1>,<2,2>,<3,3>,<4,4>,<4,5>,<5,4>,<5,5>} 关系图如图。 3-9.1 4个元素的集合共有多少不同的划分。 解 整数4可划分为:4,1+3,1+1+2,2+2,1+1+1+1。 121 1+C4+C4+ C42+1=15(种) 2 3-9.2 设{A1,A2,?,Ak}是集合A的一个划分,我们定义A上的一个二元关系R,使<a,b >∈R当且仅当a和b在这个划分的同一块中。证明R是自反的,对称的,和传递的。 证明 设对任意a∈A,则必存在Ai,使a∈Ai,因a与a必可看作在同一块中,故有<a,a> ∈R。即R是自反的。 3-10.4 设R是一个二元关系,S={<a,b>∣对于某一c,有<a,c>∈R∧<c,b>∈R},设a,b∈A,若有<a,b>∈R,则a与b必在同一块,故b与a亦在同一块,<b, a>∈R,即R是对称的。 对任意a,b,c∈A, <a,b>∈R∧<b,c>∈R ?(?i)(a∈Ai∧b∈Ai)∧(?j)(b∈Aj∧c∈Aj) ?(?i)(?j)(a∈Ai∧c∈Aj∧b∈Ai∩Aj) ?(?i)(?j)(a∈Ai∧c∈Aj∧Ai∩Aj≠?) ?(?i)(?j)(a∈Ai∧c∈Aj∧i=j)(∵i≠j?Ai∩Aj= ?) ?a,c在同一块 ?<a,c>∈R ∴R传递 证明若R是一个等价关系,则S也是一个等价关系。 证明 设R是A上的等价关系: (1) 对任一x∈A,因为R在A上自反,所以<x,x>∈R。由S定义,<x,x>∈S,所以S是自反的。 (2) 对任意x,y∈A,若<x,y>∈S,则存在某个c,使得<x,c>∈R∧<c,y>∈R,因为R是对称,故有:<y,c>∈R∧<c,x>∈R,由S的定义,可知<y,x>∈S,所以S是对称的。 (3) 对任意x,y,z∈A,若<x,y>∈S,及<y,z>∈S,则必存在某个c1,使<x,c1>∈R,<c1,y>∈R。由R的传递性,可知<x,y>∈R,同理存在c2,使<y,c2>∈R∧<c2,z>∈R,由R传递,可知<y,z>∈R。再由S定义,得<x,z>∈S。故S是传递的。 3-10.5 设正整数的序偶集合A,在A上定义二元关系R如下:<<x,y>, <u,v>>∈R,当且仅当xv=yu,证明R是一个等价关系。