创新、学术、励志、激情 新航道专转本数学内部资料 严禁翻印
围成正方形的长度为a?x,而面积记为S2, S(x)?S1(x)?S2(x)=?(x2?2)?(2a?x42)
2=
S?(x)?S??(12?x?1814?x?(a?x)16,(0?x?a)
2?a(x?a)?0,得x?2?a8?2?8?2?, 2?a8?2?)?0,故S()?Smax。 56.解:设圆桶底面半径r,为油桶高为h,则 2?rh?2?r?A, 2解得h?A2?r2?r, 2V(r)??r?h??r(A2?r?r)?Ar2r ??r, 3h V'(r)?A2?3?r?0,得r?2A6? ?V\???A???0,取 r?6???A6?时容积最大, 图示2.9 此时,h?13A?。 57.解:设BD?x,则OD?15? 总费用Z(x)?2?105?x?2?(15?4x?25 x?25)?6?10?2?10(10x?90?6x?25) 24422? Z'(x)?210?(10504x6?2x?25,) 0解得 x??12.5(公里),唯一驻点即为所求。 - 68 -
第二章 导数计算及应用
58.设切点为(X,Y)?(X,1?4X2),由4x2?y2?1 ,求导得
dydxdydx4xy4XY4X1?4X2 8x?2y?0,??,k????
yA B O 4x?y?1 22x图示2.10 切线方程为y?1?4X2??4X1?4X4X222(x?X), 令x?0得y?1?4X2??11?4X2。 1?4X令y?0得x?X?1?4X4X2?14X2,S(X)?12?11?4X2?14X, 求S(X)的最小即求X1?4XF'?X的最大,令F?X??X1?4X12 ??1?4X2?X?4X1?4X2?0,解得X?唯一驻点,即为所求。 22此时切点坐标为??1?22,1??。 2?59、解:(1)利润函数 R?x??xp?c?x??tx?x?7?0.2x???3x?1??tx??0.2x??4?t?x?1
2R'?x???0.4x??4?t??0得x?52?4?t?,唯一驻点,即为所求。
52(2)政府税收总额Q?t??tx?
52?4?t?t,Q'?- 69 -
?4?2t??0,t?2
创新、学术、励志、激情 新航道专转本数学内部资料 严禁翻印
唯一驻点,即为所求。
章节测试答案 1.0,a0n!
2.3x2?3xln3?xx(lnx?1) 3. x?y??2 4. 2x 5. a?2 6. ?1,3? 7. y?1水平渐近; x?1垂直渐近; y?1 8、B 9、A 10、C 11、D 12、C 13、C 14、C 15、A 16、C 17、B 18、B 19.原式=lim 20.y??1?1? ????2?2?2x1?x??1??1????x?1sinx?xxsinxx?0?limsinx?xx2x?0?limcosx?12xx?0?lim?sinx2x?0?0 21.y??2arcsinx2?11?x2?12?24?x2arcsinx2 422.lny?arctanxln?1?x2?,y???1?x1y?y?11?x2ln?1?x2??arctanx2x1?x2 2?arctanx?ln?1?x2??2x??arctanx? 2?1?x2?1?x??23.y??2cosxln2?secx?tanx,dy?2secxsecx?tanx?ln2dx x?0??2x,?24.f??x??? x,x?0?arctanx?21?x?f???0??limf???0??limf?h??f?0?hf?h??f?0?hh?0??lim?limharctanh?0h?h?0h2h?0??0
h?0?h?0??0,?f??0??0
- 70 -
第二章 导数计算及应用
??n??nn2x,而f25.f?x???n????1?n?0?x???n?0f?n??0?n!nx,
故
f?0?n!???1?2,所以fnn?n??0????1?1n2n!
n26.y?arctan1x?12xlnx,y??1111?1?1 ???lnx???lnx??22?1?x222?1??x?21??2??x?y???2x?1?x?22?12x 27.y??21?2x,y????4?1?2x?y?y2,y????16?1?2x?11?1x3,y????0??16 28.lny?xln(1?1x), ?ln(1?1x)?x(?1x)?ln(1?21x)?11?x y??(1?1x)(ln(1?1x1x)?11?x)
??2?1??1?1???f????1???ln?1?2??11?2????1??2??212(sin?lnx??cos?lnx?)?12x2??????2??3?ln3?? 3??29.y??[cos?ln(x)??121x?sin?ln(x)??121x] =y''?(sin?lnx??cos?lnx?)?cos?lnx???1 sin?lnx??sin(lnx) cos?lnx?x?x, ?y''(1)??x?1?1?x2cos0130.y'?1?x2?arccosxx21?x2?1x
??1x1?x2?arccosxx2?1?xx2?1?x2?1x
- 71 -
创新、学术、励志、激情 新航道专转本数学内部资料 严禁翻印
lim111?1]31.原式=ex?0x[ln(1?x)x?ex?0limxln(1?x)?1xlimln(1?x)?xx2?ex?0?e?11?xlimx?02x1?e?12
132.原式=limxlnxx???(lnx?1)a?1ax?lim2lnx?1axlnxax????0
2233.y??2x1?x2,y???2(1?x)?2x?2x(1?x)22?2?2x2(1?x)
y??0,y???0 解得 x?0,x??1 x y? y?? y ???,?1? ? ? ?1 ??1,0? ? 0 ?0,1? ? ? ?? 1 ?1,??? ? ? ?? 拐点 极小值 拐点 x?1??ln2 ? ?? ?? y??1??ln2 y?0??0
34.解f??(0)?lim?x?0f(h)?f(0)hf(h)?f(0)?lim?x?0e?1he?hh?1 ??1 f??(0)?lim?x?0h f?(0)不存在,即不可导 ?lim?x?0?1hx?x?0?e, f?(x)?? 可知,x?0时,y取极小值y(0)?1 ?x???e,x?035.解:平均成本c(x)? c?(x)??100x2100x?x4?6 ?14?0 x??20(负号舍去) c??(20)?0,所以当x?20时,c?x?的最小值 cmin?100?14?20?6?20?320(万元/单位) 236.解:设销售量为x百台,c(x)?2?x
1212??4x?x?2?x?3x?x,0?x?4利润函数L(x)?R(x)?c(x)?? 22?8?2?x?6?x,x?4?
- 72 -