所以
|AM||AD|?|CG||CB|?13. ┅┅┅┅┅┅┅┅┅┅┅┅┅┅12分
24.(本小题满分12分)
解:(Ⅰ)∵an?1?2an?1(n?N*),
∴an?1?1?2(an?1), ┅┅┅┅┅┅┅┅┅┅┅┅┅┅2分 即
an?1?1?2(n?N*), an?1∴数列{an?1}是以a1?1?2为首项、以2为公比的等比数列.┅┅┅┅┅┅3分 (Ⅱ)由(Ⅰ)知an?1?2?2n?1?2n,∴an?2n?1,
∴bn?2nanan?111??2n(2?1)(212nn?1?1)1?12?1n?12n?1?1┅┅┅┅┅┅┅┅┅┅┅┅5分
∴Sn?(2?111??n?1?32?12?12?12?12?12?11. ┅┅┅┅┅┅┅┅┅┅┅┅┅┅7分 3)?(2?13)???(1n?1n?1)
(Ⅲ)an?2n?1,
∵4c?1?4c?1???4c?1?(an?1)c,
12nn∴22c?2?22c?2???22c?2?2nc
12nn∴(2c1?2)?(2c2?2)???(2cn?2)?ncn
即2(c1?c2???cn)?2n?ncn┅┅┅┅┅┅┅┅┅① ┅┅┅┅┅┅┅┅8分 ∴2(c1?c2???cn?cn?1)?2(n?1)?(n?1)cn?1┅┅②
②?①得2cn?1?2?(n?1)cn?1?ncn┅┅┅┅┅┅┅┅┅③ ┅┅┅┅┅10分 ∴2cn?2?2?(n?2)cn?2?(n?1)cn?1┅┅┅┅┅┅┅┅┅④
④?③得2cn?2?2cn?1?(n?2)cn?2?2(n?1)cn?1?ncn, ┅┅┅┅┅┅11分 则ncn?2?ncn?2ncn?1,即cn?2?cn?2cn?1(n?N*),
所以,数列{cn}是等差数列. ┅┅┅┅┅┅┅┅┅┅┅┅┅12分
- 11 -