图6-4 在Release下运行\
图6-5 在Release下运行无误,运行\
6.2.1 为VC++ 2008 Express配置OpenCV环境
(1)打开VC++ 2008 Express,菜单 Tools -> Options -> Projects and Solutions -> VC++
36
Directories
①Show directories for选择include files,加入目录 D:\\Program Files\\OpenCV2.0\\vc2008\\include\\opencv
②Show directories for选择library files,加入目录 D:\\Program Files\\OpenCV2.0\\vc2008\\lib 关闭VC++ 2008 Express。 (2)使用OpenCV 2.0编程
①打开VC++ 2008 Express,创建一个Win32控制台程序opencvhello;
②选择Solution Explorer里的opencvhello项目,点击鼠标右键,选择Properties;
③为项目的Debug配置增加依赖的库:cxcore200d.lib cv200d.lib highgui200d.lib ④为项目的Release配置增加依赖的库:cxcore200.lib cv200.lib highgui200.lib ⑤编译运行附录里的例程(需要将lena.jpg文件放在项目目录下)。
6.3 实验结果
(1)单个人脸检测
总数1/漏检0/错检0 (2)多个人脸检测
37
总数10/漏检3/错检0 (3)多个人脸检测
总数2/漏检0/错检0
38
6.4 结论
从实验结果可以看出,这种检测人脸的方法的漏检率还是比较高的。从有限的实验结果来分析,漏检的原因主要在于待检测的人脸中眼睛部分不够清晰。这主要是因为训练集数量太少,而且非人脸样本比重偏低。事实上,世界上的非人脸样式要远远大于人脸样式,因此有足够多的非人脸样本,才能够让分类器对非人脸图案的“分辨”能力大大提高。
39
参考文献
[1]M.F.Augusteijn and T.L.Skujca,“Identification of Human Faces through Texture·Based Feature Recognition and Neural Network Technology,”Proc.IEEEConf.Neural Networks,PP.392-398,1993.
[2]Viola P,Jones M.Rapid object detection using a boosted cascade of simplefeature[c].In:Proceedings of IEEE Conference on Computer Vi sion and Pattern Recognition,Kauai,Hawaii,USA,2001,1:I-51l-518.
[3] P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features. IEEE Conf on Computer Vision and Pattern Recognition, Kauai, Hawaii, USA: IEEE Computer Society, 2001.
[4]M.Venkatraman,v.Govindamju,“Zero crossings of a non-orthogonal wavelet transform for object location”,icip,v01.3,PP.3057,1995
[5]A.Tsukamoto,C.-W.Lee,and S.Tsuji,“Detection and Tracking of Human Face with Synthesized Templates,”Proc.First Asian Conf.Computer Vision,PP.183-186,1993.
[6] A.Tsukamoto,C.-W.Lee,and S.Tsuji,“Detection and Pose Estimation of Human Face with Synthesized Image Models,”Proc.Int’l Conf.Pattern Recognition,PP.754-757,1994.
[7]T F Cootes,C J Taylor,D H Cooper,et a1.Active shape model—their training and application[J].Computer Vision and Image Understanding,1995,6l(1):38—59
[8] Viola P.,Jones M. J.、Robust Real-Time Face Detection、International Journal of Computer Vision 57(2), 137-154, 2004
[9] Sung K K. Learning and example selection for Object and Pattern Detection. PhD Dissertation,Massachusetts Institute of Technology, 1996
[10] Sung K K, Poggio T. Example-based learning for view-based human face detection.Technical Report AI Memo 1521, MIT AI Lab, 1994
[11] Sung K K, Poggio T. Example-based learning for view -based human face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(1):38-51
[12]R.Lienhart.J.Maydt.An Extended Set of Haar-1 ike Features for Rapid Object Detection[C].IEEE ICIP.2002(1):900-903.
[13] Vapnik V N. The Nature of Statistical Learning Theory, NY:Apringer-Verlag,1995 张学工译。统计学习理论的本质。北京:清华大学出版社,2000
[14] Osuua E, Freund R, and Girosi F. Training support vector machines: An application to face detection. In Proceedings of IEEE Conference on Computer Vision, pages 555-562,1998
[15]杨涛.人脸检测与跟踪[D],西北工业大学,2004年3月.
[16]Huang F J,Chen T.Tracking of multiple faces for human—computer interfaces and virtualenvironments[C].IEEE Intl.Conf.on Multimedia and Expo.New York,July 2000.
[17]周德华,毛敏峰,徐浩.一种多人脸跟踪算法的研究与实现[J],电视技术,2005,275(5):88~90.
40