?33sin2x?cos2x 22?1?3?3??2sin2x?2cos2x??
???????3?sin2xcos?cos2xsin?
33??2?????? ?3sin?2x?? 故f?x?的最小正周期T?23??(2)令2k???2?2x??3?2k???2 ?k?Z?
可得:k???12?x?k??5? 12故函数f?x?的单调递增区间为?k?????12,k??5??? ?k?Z? 12?16. 解:(1)当a??1,b?2,c?4时,f?x???x?2x?4
2 由f?x??1可得:?x?2x?4?1
2 故?x?2x?3?0 即x?2x?3?0 于是有?x?3??x?1??0 ? x?3或x??1 因此,f?x??1的解集为???,?1?22?3,+??
(2)由f?1??f?3??0 可得:f?x??a?x?1??x?3?
① 当a?0时,f?x??0?1在x??1,3? 明显恒成立,符合题意; ② 当a?0时,二次函数f?x?的开口向上,对称轴为x?2
f?x?在区间?1,3?上的单调性为在区间?1,2?上单调递减,?2,3?上单调递增. 故其最大值为f?x?max?f?1??f?3??0?1 符合题意.
③ 当a?0时,二次函数f?x?的开口向下,对称轴为x?2
f?x?在区间?1,3?上的单调性为在区间?1,2?上单调递增,?2,3?上单调递减.
故其最大值为f?x?max?f?2???a?1 ?a??1 于是此时a???1,0?
综上所述,所求实数a的取值范围为??1,???. 17. 解:(1)由题意可知:f?x?的最小正周期为T?2??2??,最小值为f?x?min??2
??2?2???2,A?2 T?故f?x??2sin?2x???
由f?x?图象上一个最低点坐标为M??2??,?2?可得: ?3?2?2?3?????2k?+ ? ??2k?? ?k?Z? 326又0????2,故??? 6??因此,函数f?x?的解析式为f?x??2sin?2x???? 6?(2)由
?12?x??2 可得:
?3?2x??7?? 66令t?2x??6,可知t????7?,?? 3?6?而y?sint在区间???7?????,?上单调递增,在区间?,??上单调递减.
?26??32? 故当2x??6??2 即x?
?6
时,f?x?取得最大值为f?x?max?2;
当2x??7??1???即x?时,f?x?取得最小值为f?x?min?2??????1. 662?2?因此,当x??????,?时,f?x?的值域为??1,2?. ?122?13x?ax2??a2?1?x?b ?a,b?R?. 3 18. (本题12分)已知函数f?x??(1)若x?1为f?x?的极值点,求a的值;
(2)若y?f?x?的图象在点1,f?1?处的切线方程为x?y?3?0, ①求f?x?在区间??2,4?上的最大值;
②求函数G?x????f?x???m?2?x?m??e ?m?R?的单调区间.
?x??解:(1)f?x?的导函数为f'?x??x2?2ax?a2?1
由x?1为f?x?的极值点可得:f'?1??1?2a?a2?1?a2?2a?0 解得:a?0或a?2
经验证:当a?0时,x?1为f?x?的极小值点; 当a?2时,x?1为f?x?的极大值点. 故所求a的值为0或2.
(2)依题意有:f?1??2,f'?1???1
1?f1??a?a2?1?b?2???3 故有? ?f'?1??1?2a?a2?1??1? 解得:a?1,b?8 3 故f?x?的解析式为f?x??①其导函数f'?x??x2?2x
138x?x2? 33令f'?x??0可得:x?2或x?0;令f'?x??0可得:0?x?2.
故f?x?在区间??2,4?上的单调性为
在区间??2,0?,?2,4?上单调递增,在区间?0,2?上单调递减. 而f?0??8,f?4??8 3故函数f?x?在区间??2,4?上的最大值为8.
?x32②函数G?x????f?x???m?2?x?m??e=?x?x??1?38?+?m?2?x?m?e?x 3?8??1=?x3?x2??m?2?x?m??e?x
3??3 其导函数G'?x??x2?2x?m?2e?x??x3?x2??m?2?x?m??e?x
3??3???18?2??1???x3?2x2??m?4?x??e?x
3??3