.AngewandteReviews
processthatcouldlimitelectrochemicalreversibility.Ontheotherhand,thetendencyofNa+tonotadopttetrahedralcoordination(unlikeLi+)meansthattransitiontoaspinelstructureonpartialdesodiationfromNaMO2isnotfavoredasitisforsomeLiMO2compositionswhereitcauseslossofcapacityoncycling.Improvedcyclingstabilitycanbeattainedbyelementalsubstitutiontosuppressthephasetransitionsandreducevolumechanges.Theseremainashurdlestoovercomeforlong-termcyclelife.Fromapracticalpointofview,somesodiummetaloxidesexhibitahighsensitivitytomoisture,althoughO3phaseshavetheadvantageoffullsodiumcontent(meaninganonsodiatedanodecanbeused),andlessairsensitivity.Anothermajoradvanceistheveryrecentdiscoveryofsodium-based“high-voltage”layeredoxides,althoughitremainstobeseenwhethercyclingstabilitywillbeachievedinthisclassofmaterials.
ThelargersizeofNa+isalsoafactorforpolyanioncathodematerials,wheretheinfluenceofthealkalimetalsize/chargeratioissignificantindeterminingthethermody-namicallymoststablephase.Theseoftenhavenolithiumanalogue.Advanceshavebeenrealizedwithseveralnovel,excitingpolyanionmaterials:examplesincludeNa1.5VPO4.8F0.7and,mostrecently,Na2Fe2(SO4)3.ThelatterexhibitsaremarkablyhighFe3+/Fe2+redoxpotentialof3.8VversusNa,alongwithfastratekineticsthataresharedbytheformer.Althoughsulfateincreasestheredoxpotential,italsoconveysmoisturesensitivity:adisadvantagenotsharedbytherelativelymorestablephosphate-typematerials.Intriguingly,formanypolyanionmaterials,numerousmodelingstudieshaverevealedthattheactivationenergyforNa+ionhoppingisusuallylowerthanforLi+(becauseoflesspolarization),withvaluesbeingroutinelyaslowas0.3eV.Thisprovidesdistinctadvantagesforionmobility,thusexplainingthefastratekinetics.ThedevelopmentofnewuniquesodiumionpolyanionframeworktypeswillbepivotalfortheadvancementofthefieldofNaionbatteries.AsthechemistryofNaintercalationismuchlessadvancedthanitslithiumcounter-part,muchremainstobeexplored.Thisalsomeansover-comingthedisadvantageofthelargervolumeexpansion/contractionaffordedbythesodiumcationwithcleverdesignofsolid-statestructures.Wenotethatthischallengeiscommontobothsodiummetalpolyanionandlayeredmetaloxidesystems,butlesssoforthemoreopenPrussianblueframeworksolids,whichpresenttheirownspecialopportunities.
Newdevelopmentsinnegativeelectrodematerialsshowthatnotonlyhardcarbons,butgraphiticmaterialscanactasactiveNaionintercalationcompoundsatlowpotential.Muchscopeliesinthisarea.Sodiummetaldioxidesbasedontitaniumalsoshowmuchpromise.ItisalsoworthnotingthatbecauseNadoesnotalloywithaluminum(asdoesLi),thisallowsAlfoiltobeusedasacurrentcollectoratthenegativeelectroderatherthanCu.Thisisbeneficialintermsofbothcostandenergydensity.ThegenerallylowervoltageofNacompoundsalsoprovidesconsiderableadvantagesforthedevelopmentofthenegativeelectrode.Thepotentialofthesodium-containingpositiveelectrodeissimilarlylowered,thusprovidingopportunitiestoexplorematerialswherethelithiumanalogueshavetoohighapotentialtosupportmanyconventionalelectrolytes.
L.F.Nazaretal.
Overall,itisclearthatNaionbatteriescancompetewithLiionbatteriesinseveralimportantrespects,butthesodiumionbatteryisstillaveryimmaturetechnologyforenergystorageapplicationscomparedtoLiion.AsidefromtheNa/SandZEBRAhigh-temperaturesystems,nocommercializednon-aqueousNaionenergystoragebatteriesexistatpresent.Thereismuchopportunityforresearchanddevelopment.Manyinroadshavebeenmaderecentlyindevelopingnewpromisingpositiveelectrodematerials.Findinggoodnegativeelectrodematerialsremainsasignificantchallenge.Nonethe-less,compositionsencompassinglow-costtransitionmetalssuchasFe,Mn,andTiforeitherthepositiveornegativeelectrodesinNaionrechargeablebatterysystems,withoutsacrificinghighenergydensityandhighpower,arenowwithinscope.Thispaveswayforthediscoveryofnewsustainablecathodesmadewithearth-abundantelementsforlarge-scalebatteries.
Acknowledgements
ThisresearchwassupportedbytheNaturalSciencesandEngineeringCouncilofCanadathroughtheirDiscoveryandCanadaResearchChairprograms.L.F.N.gratefullyacknowl-edgestheirongoingsupportfornewelectrochemicaltechnol-ogies.
Received:October23,2014
Publishedonline:February4,2015
[1][2][3][4][5][6][7][8][9]
[10][11][12][13][14][15][16][17]
[18]
J.M.Tarascon,M.Armand,Nature2001,414,359–367.F.Risacher,B.Fritz,Aquat.Geochem.2009,15,123–157.A.Yaksic,J.E.Tilton,Resour.Policy2009,34,185–194.
S.Fletcher,BottledLightning:Superbatteries,ElectricCars,andtheNewLithiumEconomy,HillandWang,NewYork,2012.Y.-F.Y.Yao,J.T.Kummer,J.Inorg.Nucl.Chem.1967,29,2453–2459.
J.B.Goodenough,H.Y.-P.Hong,J.A.Kafalas,Mater.Res.Bull.1976,11,203–220.
Ceramatec,Inc.WO2012061823A2,patentapplication,2012.A.Hayashi,K.Noi,A.Sakuda,M.Tatsumisago,Nat.Commun.2012,3,856.
V.Palomares,P.Serras,I.Villaluenga,K.B.Hueso,J.Carre-tero-Gonzalez,T.Rojo,EnergyEnviron.Sci.2012,5,5884–5901;V.Palomares,M.Casas-Cabanas,E.Castillo-Martinez,M.H.Han,T.Rojo,EnergyEnviron.Sci.2013,6,2312–2337.S.W.Ki,D.-H.Seo,X.Ma,G.Ceder,K.Kang,Adv.EnergyMater.2012,2,710–721.
H.Pan,Y.S.Hu,L.Chen,EnergyEnviron.Sci.2013,6,2338–2360.
M.D.Slater,D.Kim,E.Lee,C.S.Johnson,Adv.Funct.Mater.2013,23,947–958.
H.Kim,J.Hong,K.-Y.Park,H.Kim,S.-W.Kim,K.Kang,Chem.Rev.2014,114,11788–11827.
H.B?hm,G.Beyermann,J.PowerSources1999,84,270–274.R.C.Galloway,S.Haslam,J.PowerSources1999,80,164–170.T.Javadi,A.Petric,J.Electrochem.Soc.2011,158,A700–A704.
T.M.O.Sullivan,C.M.Bingham,R.E.Clark,InternationalSymposiumonPowerElectronics,ElectricDrives,AutomationandMotion,2006,pp.34–36.
A.vanZyl,SolidStateIonics1996,86,883–889.
Angew.Chem.Int.Ed.2015,54,3431–3448
3446www.angewandte.org
??2015Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim
SodiumIonBatteries
AngewandteChemie[19]D.J.L.Brett,P.Aguiar,N.P.Brandon,J.PowerSources2006,
[51]S.M.Oh,S.T.Myung,J.Hassoun,B.Scrosati,Y.K.Sun,
163,514–522.
Electrochem.Commun.2012,22,149–152.
[20]M.S.Whittingham,Prog.SolidStateChem.1978,12,41–99.[52]J.Lu,S.C.Chung,S.Nishimura,A.Yamada,Chem.Mater.
[21]A.S.Nagelberg,W.L.Worrell,J.SolidStateChem.1979,29,
2013,25,4557–4565.
345–354.
[53]R.Tripathi,S.M.Wood,M.S.Islam,L.F.Nazar,Energy
[22]T.Ohzuku,A.Ueda,M.Nagayama,Y.Iwakoshi,H.Komori,
Environ.Sci.2013,6,2257–2265.
Electrochim.Acta1993,38,1159–1167.
[54]H.Liu,F.C.Strobridge,O.J.Borkiewicz,K.M.Wiaderek,
[23]K.Ozawa,SolidStateIonics1994,69,212–216.
K.W.Chapman,P.J.Chupas,C.P.Grey,Science2014,334,[24]R.Yazami,N.Lebrun,M.Bonneau,M.Molteni,J.Power
1252817-1–1252817-7.
Sources1995,54,389–392.
[55]X.Zhang,M.vanHulzen,D.P.Singh,A.Brownrigg,J.P.
[25]T.Ohzuku,Y.Makimura,Chem.Lett.2001,8,744–745.
Wright,N.H.vanDijk,M.Wagemaker,NanoLett.2014,14,[26]R.Berthelot,D.Carlier,C.Delmas,Nat.Mater.2011,10,74–
2279–2285.
80.
[56]K.Saravanan,C.W.Mason,A.Rudola,K.H.Wong,P.Balaya,
[27]D.Carlier,J.H.Cheng,R.Berthelot,M.Guignard,M.
Adv.EnergyMater.2013,3,444–450.
Yoncheva,R.Stoyanova,etal.,DaltonTrans.2011,40,9306–[57]C.Zhu,K.Song,P.A.vanAken,J.Maier,Y.Yu,NanoLett.
9312.
2014,14,2175–2180.
[28]J.-P.Parant,R.Olazcuaga,M.Devalette,C.Fouassier,J.Solid
[58]J.Liu,K.Tang,K.Song,P.A.vanAken,Y.Yu,J.Maier,
StateChem.1971,3,1–11.
Nanoscale2014,6,5081–5086.
[29]A.Mendiboure,C.Delmas,P.Hagenmuller,J.SolidState
[59]R.A.Shakoor,D.H.Seo,H.Kim,Y.U.Park,J.Kim,S.W.
Chem.1985,57,323–331.
Kim,H.Gwon,S.Leec,K.Kang,J.Mater.Chem.2012,22,[30]O.I.Velikokhatnyi,C.-C.Chang,P.N.Kumta,J.Electrochem.
20535–20541.
Soc.2003,150,A1262–1266.
[60]W.Song,X.Ji,Z.Wu,Y.Zhu,F.Li,Y.Yao,C.E.Banks,RSC
[31]X.Ma,H.Chen,G.Ceder,J.Electrochem.Soc.2011,158,
Adv.2014,4,11375–11383.
A1307–1311.
[61]B.L.Ellis,W.R.M.Makhanouk,Y.Makimura,K.Toughilland,
[32]N.Yabuuchi,M.Kajiyama,J.Iwatate,H.Nishikawa,S.Hitomi,
L.F.Nazar,Nat.Mater.2007,6,749–753.
R.Okuyama,R.Usui,Y.Yamada,S.Komaba,Nat.Mater.2012,[62]Y.U.Park,D.H.Seo,H.S.Kwon,B.Kim,J.Kim,H.Kim,I.
11,512–517.Kim,H.I.Yoo,K.Kang,J.Am.Chem.Soc.2013,135,13870–[33]Ref.[26].
13878.
[34]H.Tomita,K.Kubota,R.Kanno,J.PowerSources2011,196,
[63]N.Recham,J.-N.Chotard,L.Dupont,K.Djellab,M.Armand,
6809–6814.
J-M.Tarascon,J.Electrochem.Soc.2009,156,A993–A999.[35]J.Xu,D.H.Lee,R.J.Cl?ment,X.Yu,M.Leskes,A.J.Pell,G.
[64]Y.Kawabe,N.Yabuuchi,M.Kajiyama,N.Fukuhara,T.
Pintacuda,X.-Q.Yang,C.P.Grey,Y.S.Meng,Chem.Mater.Inamasu,R.Okuyama,I.Nakai,S.Komaba,Electrochem.2014,26,1260–1269.
Commun.2011,13,1225–1228.
[36]N.Yabuuchi,R.Hara,M.Kajiyama,K.Kubota,T.Ishigaki,A.
[65]B.Ellis,D.H.Ryan,L.F.Nazar,Chem.Mater.2010,22,1059–
Hoshikawa,S.Komaba,Adv.EnergyMater.2014,4,1301453.1070.
[37]a)Y.-K.Sun,Z.Chen,H.-J.Noh,D.-J.Lee,H.-G.Jung,Y.Ren,
[66]P.Barpanda,G.Liu,C.D.Ling,M.Tamaru,M.Avdeev,S.C.
S.Wang,C.SeungYoon,S.-T.Myung,K.Amine,Nat.Mater.Chung,Y.Yamada,A.Yamada,Chem.Mater.2013,25,3480–2012,11,942–947;b)D.Wang,I.Belharouak,G.Zhou,K.3487.
Amine,Adv.Funct.Mater.2013,23,1070–1075.
[67]P.Barpanda,T.Ye,M.Avdeev,S.C.Chunga,A.Yamada,J.
[38]D.Mohanty,A.Huq,E.A.Payzant,A.S.Sefat,J.Li,D.P.
Mater.Chem.A2013,1,4194–4197.
Abraham,D.L.Wood,C.Daniel,Chem.Mater.2013,25,4064–[68]P.Barpanda,J.Lu,T.Ye,M.Kajiyama,S.C.Chung,N.
4070.
Yabuuchi,S.Komaba,A.Yamada,RSCAdv.2013,3,3857–[39]J.Billaud,G.Singh,A.R.Armstrong,E.Gonzalo,V.Roddatis,
3860.
M.Armand,T.Rojo,P.G.Bruce,EnergyEnviron.Sci.2014,7,[69]J.Pizarro-Sanz,J.Dance,G.Villeneuve,M.Arriortua-Mar-1387–1391.
caida,Mater.Lett.1994,18,327–332.
[40]N.Yabuuchi,R.Hara,K.Kubota,J.Paulsen,S.Kumakura,S.
[70]R.Tripathi,T.N.Ramesh,B.L.Ellis,L.F.Nazar,Angew.
Komaba,J.Mater.Chem.A2014,2,16851–16855.
Chem.Int.Ed.2010,49,8738–8742;Angew.Chem.2010,122,[41]S.LeVine,ThePowerhouse:InsidetheInventionofaBatteryto
8920–8924.
SavetheWorld,VikingAdult,PenguinRandomHouse,[71]P.Barpanda,J.-N.Chotard,N.Recham,C.Delacourt,M.Ati,
Canada,2015.
L.Dupont,M.Armand,J.-M.Tarascon,Inorg.Chem.2010,49,[42]D.Kim,E.Lee,M.Slater,W.Lu,S.Rood,C.S.Johnson,
7401–7408.
Electrochem.Commun.2012,18,66–69.
[72]R.Tripathi,G.R.Gardiner,M.S.Islam,L.F.Nazar,Chem.
[43]X.Wang,G.Liu,T.Iwao,M.Okubo,A.Yamada,J.Phys.
Mater.2011,23,2278–2288.
Chem.C2014,118,2970–2976.
[73]M.Reynaud,G.Rousse,A.M.Abakumov,M.T.Sougrati,
[44]Z.Lu,J.R.Dahn,Chem.Mater.2001,13,1252–1257.
G.V.Tendeloo,J.N.Chotarda,J.M.Tarascon,J.Mater.Chem.A2014,2,2671–2680.
[45]D.Buchholz,L.G.Chagas,C.Vaalma,L.Wu,S.Passerini,J.
Mater.Chem.A2014,2,13415–13421.
[74]P.Barpanda,G.Oyama,C.D.Ling,A.Yamada,Chem.Mater.
2014,26,1297–1299.
[46]M.Sathiya,K.Hemalatha,K.Ramesha,J.M.Tarascon,A.S.
[75]P.Barpanda,G.Oyama,S.Nishimura,S.C.Chung,A.Yamada,
Prakash,Chem.Mater.2012,24,1846–1853.Nat.Commun.2014,5,4358.
[47]E.Talaie,V.Duffort,L.F.Nazar,submitted.
[76]J.Liu,D.Chang,P.Whitfield,Y.Janssen,X.Yu,Y.Zhou,J.Bai,
[48]P.Moreau,D.Guyomard,J.Gaubicher,F.Boucher,Chem.
J.Ko,K.W.Nam,L.Wu,Y.Zhu,M.Feygenson,G.Amatucci,Mater.2010,22,4126–4128.
A.V.Ven,X.Q.Yang,P.Khalifah,Chem.Mater.2014,26,[49]P.P.Prosini,C.Centoa,A.Masci,M.Carewska,SolidState
3295–3305.
Ionics2014,263,1–8.
[77]H.Chen,Q.Hao,O.Zivkovic,G.Hautier,L.S.Du,Y.Tang,
[50]K.T.Lee,T.N.Ramesh,F.Nan,G.Botton,L.F.Nazar,Chem.
Y.Y.Hu,X.Ma,C.P.Grey,G.Ceder,Chem.Mater.2013,25,Mater.2011,23,3593–3600.
2777–2786.
Angew.Chem.Int.Ed.2015,54,3431–3448
??2015Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim
www.angewandte.org3447
.AngewandteReviews
[78]W.Huang,J.Zhou,B.Li,J.Ma,S.Tao,D.Xia,W.Chu,Z.Wu,
Sci.Rep.2014,4,1–8.
[79]H.J.Buser,D.Schwarzenbach,W.Petter,A.Ludi,Inorg.
Chem.1977,16,2704–2709.
[80]Y.Lu,L.Wang,J.Cheng,J.B.Goodenough,Chem.Commun.
2012,48,6544–6546.
[81]H.Lee,Y.-I.Kim,J.-K.Park,J.W.Choi,Chem.Commun.2012,
48,8416–8418.
[82]a)T.Matsuda,M.Takachi,Y.Moritomo,Chem.Commun.
2013,49,2750–2752;b)M.Takachi,T.Matsuda,Y.Moritomo,Jpn.J.Appl.Phys.2013,52,090202.
[83]Y.Yue,A.J.Binder,G.Guo,A.Zhang,Z.-A.Qiao,C.Tian,S.
Dai,Angew.Chem.Int.Ed.2014,53,3134–3137;Angew.Chem.2014,126,3198–3201.
[84]L.Wang,Y.Lu,J.Liu,M.Xu,J.Cheng,D.Zhang,J.B.
Goodenough,Angew.Chem.Int.Ed.2013,52,1964–1969;Angew.Chem.2013,125,2018–2021.
[85]X.Wu,W.Deng,J.Qian,Y.Cao,X.Ai,H.Yang,J.Mater.
Chem.A2013,1,10130.
[86]Y.You,X.-L.Wu,Y.-X.Yin,Y.-G.Guo,EnergyEnviron.Sci.
2014,7,1643–1647.
[87]H.-W.Lee,R.Y.Wang,M.Pasta,S.W.Lee,N.Liu,Y.Cui,Nat.
Commun.2014,5,5280.
[88]M.S.Islam,C.A.J.Fisher,Chem.Soc.Rev.2014,43,185–204.[89]S.P.Ong,V.L.Chevrier,G.Hautier,A.Jain,C.Moore,S.Kim,
X.Ma,G.Ceder,EnergyEnviron.Sci.2011,4,3680.
[90]H.Kim,D.J.Kim,D.-H.Seo,M.S.Yeom,K.Kang,D.K.Kim,
Y.Jung,Chem.Mater.2012,24,1205–1211.
[91]D.H.Lee,J.Xu,Y.S.Meng,Phys.Chem.Chem.Phys.2013,15,
3304–3312.
[92]Y.Hinuma,Y.S.Meng,G.Ceder,Phys.Rev.B2008,77,224111.[93]Y.Mo,S.P.Ong,G.Ceder,Chem.Mater.2014,26,5208–5214.[94]Ref.[53].
[95]J.M.Clark,P.Barpanda,A.Yamada,M.SaifulIslam,J.Mater.
Chem.A2014,2,11807–11812.
[96]I.A.Udod,H.B.Orman,V.K.Genchel,Carbon1994,32,101–
106.
[97]M.M.Doeff,Y.Ma,S.J.Visco,L.C.DeJonghe,J.Electro-chem.Soc.1993,140,L169–L170.
[98]a)D.A.Stevens,J.R.Dahn,J.Electrochem.Soc.2000,147,
1271–1273;b)D.A.Stevens,J.R.Dahn,J.Electrochem.Soc.2001,148,A803.
[99]S.Komaba,W.Murata,T.Ishikawa,N.Yabuuchi,T.Ozeki,T.
Nakayama,A.Ogata,K.Gotoh,K.Fujiwara,Adv.Funct.Mater.2011,21,3859–3867.
[100]R.C.Asher,J.Inorg.Nucl.Chem.1959,10,238–249.
[101]P.Ge,M.Fouletier,SolidStateIonics1988,28–30,1172–1175.[102]S.Komaba,T.Ishikawa,N.Yabuuchi,W.Murata,A.Ito,Y.
Ohsawa,ACSAppl.Mater.Interfaces2011,3,4165–4168.[103]S.Wenzel,T.Hara,J.Janek,P.Adelhelm,EnergyEnviron.Sci.
2011,4,3342–3348.
[104]Y.Wen,K.He,Y.Zhu,F.Han,Y.Xu,I.Matsuda,Y.Ishii,J.
Cumings,C.Wang,Nat.Commun.2014,5,4033.
[105]Y.-X.Wang,S.-L.Chou,H.-K.Liu,S.-X.Dou,Carbon2013,57,
202–208.
[106]S.I.Park,I.Gocheva,S.Okada,J.Yamaki,J.Electrochem.Soc.
2011,158,A1067.
[107]C.Didier,M.Guignard,C.Denage,O.Szajwaj,S.Ito,I.
Saadoune,J.Darriet,C.Delmas,Electrochem.Solid-StateLett.2011,14,A75–A78.
[108]M.Guignard,C.Didier,J.Darriet,P.Bordet,E.Elka?m,C.
Delmas,Nat.Mater.2013,12,74–80.
[109]H.Xiong,M.D.Slater,M.Balasubramanian,C.S.Johnson,T.
Rajh,J.Phys.Chem.Lett.2011,2,2560–2565.
[110]P.Senguttuvan,G.Rousse,V.Seznec,J.-M.Tarascon,M.R.
Palacín,Chem.Mater.2011,23,4109–4111.
L.F.Nazaretal.
[111]W.Wang,C.Yu,Z.Lin,J.Hou,H.Zhu,S.Jiao,Nanoscale2013,
5,594–599.
[112]A.Rudola,K.Saravanan,C.W.Mason,P.Balaya,J.Mater.
Chem.A2013,1,2653–2662.
[113]B.Guo,X.Yu,X.-G.Sun,M.Chi,Z.-A.Qiao,J.Liu,Y.-S.Hu,
X.-Q.Yang,J.B.Goodenough,S.Dai,EnergyEnviron.Sci.2014,7,2220–2226.
[114]Y.Wang,X.Yu,S.Xu,J.Bai,R.Xiao,Y.-S.Hu,H.Li,X.-Q.
Yang,L.Chen,X.Huang,Nat.Commun.2013,4,2365.
[115]R.Fielden,M.N.Obrovac,J.Electrochem.Soc.2014,161,
A1158–A1163.
[116]V.L.Chevrier,G.Ceder,J.Electrochem.Soc.2011,158,
A1011–A1014.
[117]S.Komaba,Y.Matsuura,T.Ishikawa,N.Yabuuchi,W.Murata,
S.Kuze,Electrochem.Commun.2012,21,65–68.
[118]L.D.Ellis,B.N.Wilkes,T.D.Hatchard,M.N.Obrovac,J.
Electrochem.Soc.2014,161,A416–A421.
[119]T.T.Tran,M.N.Obrovac,J.Electrochem.Soc.2011,158,
A1411–A1416.
[120]J.W.Wang,X.H.Liu,S.X.Mao,J.Y.Huang,NanoLett.2012,
12,5897–5902.
[121]L.D.Ellis,T.D.Hatchard,M.N.Obrovac,J.Electrochem.Soc.
2012,159,A1801–A1805.
[122]Z.Du,R.A.Dunlap,M.N.Obrovac,J.AlloysCompd.2014,
617,271–276.
[123]A.Darwiche,C.Marino,M.T.Sougrati,B.Fraisse,L.Stievano,
L.Monconduit,J.Am.Chem.Soc.2012,134,20805–20811.[124]J.Qian,X.Wu,Y.Cao,X.Ai,H.Yang,Angew.Chem.Int.Ed.
2013,52,4633–4636;Angew.Chem.2013,125,4731–4734.[125]Ref.[8].
[126]T.D.Hatchard,M.N.Obrovac,J.Electrochem.Soc.2014,161,
A1748–A1752.
[127]A.Ponrouch,R.Dedryvere,D.Monti,A.E.Demet,J.M.
AtebaMba,L.Croguennec,C.Masquelier,P.Johansson,M.R.Palacin,EnergyEnviron.Sci.2013,6,2361–2369.[128]Ref.[99].[129]Ref.[102].
[130]A.Bhide,J.Hofmann,A.K.Durr,J.Janek,P.Adelhelm,Phys.
Chem.Chem.Phys.2014,16,1987–1998.
[131]A.Ponrouch,E.Marchante,M.Courty,J.-M.Tarascon,M.R.
Palacin,EnergyEnviron.Sci.2012,5,8572–8583.
[132]J.M.Tarascon,D.Guyomard,SolidStateIonics1994,69,293–
305.
[133]J.Zhao,L.Zhao,K.Chihara,S.Okada,J.-i.Yamaki,S.
Matsumoto,S.Kuze,K.Nakane,J.PowerSources2013,244,752–757.[134]Ref.[117].[135]Ref.[123].[136]Ref.[124].
[137]A.Fukunaga,T.Nohira,R.Hagiwara,K.Numata,E.Itani,S.
Sakai,K.Nitta,S.Inazawa,J.PowerSources2014,246,387–391.
[138]S.A.MohdNoor,P.C.Howlett,D.R.MacFarlane,M.Forsyth,
Electrochim.Acta2013,114,766–771.
[139]H.Yoon,H.Zhu,A.Hervault,M.Armand,D.R.MacFarlane,
M.Forsyth,Phys.Chem.Chem.Phys.2014,16,12350–12355.[140]C.Ding,T.Nohira,K.Kuroda,R.Hagiwara,A.Fukunaga,S.
Sakai,K.Nitta,S.Inazawa,J.PowerSources2013,238,296–300.
[141]N.Wongittharom,T.-C.Lee,C.-H.Wang,Y.-C.Wang,J.-K.
Chang,J.Mater.Chem.A2014,2,5655–5661.
[142]L.G.Chagas,D.Buchholz,L.Wu,B.Vortmann,S.Passerini,J.
PowerSources2014,247,377–383.
[143]D.Monti,E.Jónsson,M.R.Palacín,P.Johansson,J.Power
Sources2014,245,630–636.
3448www.angewandte.org
??2015Wiley-VCHVerlagGmbH&Co.KGaA,WeinheimAngew.Chem.Int.Ed.2015,54,3431–3448