Na ion battery-Review-Angew Chem

2025-06-27

.AngewandteReviews

L.F.Nazaretal.

DOI:10.1002/anie.201410376

SodiumIonBatteriesSpecialIssue150YearsofBASF

TheEmergingChemistryofSodiumIonBatteriesforElectrochemicalEnergyStorage

DipanKundu,ElaheTalaie,VictorDuffort,andLindaF.Nazar*

Keywords:

anodes·cathodes·energystorage·gridstorage·sodiumionbatteries

AngewandteChemie??2015Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim

Angew.Chem.Int.Ed.2015,54,3431–3448

www.angewandte.org3431

.AngewandteReviews

L.F.Nazaretal.

Energystoragetechnologyhasreceivedsignificantattentionfor

FromtheContents

1.Introduction

3432

portableelectronicdevices,electricvehiclepropulsion,bulkelectricitystorageatpowerstations,andloadlevelingofrenewablesources,suchassolarenergyandwindpower.Lithiumionbatterieshavedominatedmostofthefirsttwoapplications.Forthelasttwocases,however,movingbeyondlithiumbatteriestotheelementthatliesbelow—sodium—isasensiblestepthatofferssustainabilityandcost-effec-tiveness.Thisrequiresanevaluationofthescienceunderpinningthesedevices,includingthediscoveryofnewmaterials,theirelectro-chemistry,andanincreasedunderstandingofionmobilitybasedoncomputationalmethods.TheReviewconsiderssomeofthecurrentscientificissuesunderpinningsodiumionbatteries.

2.OverviewoftheSodiumIonCell34333.CathodeMaterialsforHighPerformanceSodiumionBatteries

4.ComputationalStudiesofNaIonMobility5.AnodeMaterials6.Electrolytes

3434

3441344234443445

1.Introduction

Energystoragehasbecomeagrowingglobalconcernoverthepastdecadeasaresultofincreasedenergydemand,combinedwithincreasesinthepriceofrefinedfossilfuelsandtheenvironmentalconsequencesoftheiruse.Thishasincreasedthecallforenvironmentallyresponsiblealternativesourcesforbothenergygenerationandstorage.Oftheseveraltechnologiesthataresuitableforlarge-scaleenergystorage,pumpedhydroelectricsystemscurrentlydominate,withcom-pressedairbeingthesecondmostutilizedsystem.However,electrochemicalenergystorage(EES)technologiesbasedonbatteriesarebeginningtoshowconsiderablepromiseasaresultofmanybreakthroughsinthelastfewyears.Theirappealingfeaturesincludehighround-tripefficiency,flexiblepower,andenergycharacteristicstomeetdifferentgridfunctions,longcyclelife,andlowmaintenance.Batteries,inparticular,representaviableenergystoragetechnologyfortheintegrationofrenewableresourcesthatprovideinter-mittentenergyintothegrid.Theseincludesolarenergyfromphotovoltaicsandwindenergy(Figure1).Thecompactsizeofbatterysystemsmakesthemwell-suitedforuseatdistributedlocations(off-gridorminigrid),wheretheycanprovideenergystorageforlocalsolaroutputthatcanbeusedtochargeanelectric/hybridelectricvehicle(EV/HEV),supplyenergyforresidentialuse,orenableelectrificationofentireruralcommunities.On-grid,batteriesareutilizedtostoreandmanagepeakloadenergyfromlargephotovoltaicpowerplantsandload-leveloutputfluctuationsatwindfarms.Thestoragecanbeusedtofeedpowertothegridwhenconsumptionexceedsregularproduction,and/orutilizedforoff-peakutilizationsuchasforEVcharging.

Energystoragefortheelectricalgridhasprimarilybeenfocussedonlithiumion(Liion),redox-flow,andhigh-temperaturebatteriesuptonow.Ofthese,LiionEESiscertainlyacontender.Nonetheless,thedemandforLiionbatteriesasamajorpowersourceinportableelectronicdevicesandvehiclesisrapidlyincreasing.Li-ioncellsarenowpoweringhybrid-electricandplug-inelectricvehiclesandareforecasttocontinuetobetheenergystoragesystemforfuturegenerations.[1]Inthefaceofgreatlyincreaseddemandsonavailablegloballithiumresourcesbecauseoftheeventualrise

7.SummaryandOutlook

Figure1.Aunifiedmodelforthegridandmicrogrid,showingtheinterplaybetweenrenewableenergygenerationthatsuppliesthegrid,energystoragesolutionsforthegrid,andenergysupplyforhybrid/electricvehicletransport.

inthesemarkets,concernsoverpotentiallyrisingcostsandavailabilityhavearisen.Mosteasilyaccessiblegloballithiumreservesareinremoteorinpoliticallysensitiveareas.[2–4]Increasingutilizationoflithiuminenergystorageapplicationswithahigher“pricepoint”willultimatelypushupthepriceoflithiumcompoundsevenwithextensivebatteryrecyclingprogramstherebymakinglarge-scalestoragebasedonthiselementlessaffordable.Limitationsintheavailabilityofthetransitionmetalsforcathodematerialsarealsoofconcern,

[*]Dr.D.Kundu,[+]E.Talaie,[+]Dr.V.Duffort,[+]Prof.L.F.Nazar

DepartmentofChemistry&WaterlooInstituteforNanotechnologyUniversityofWaterloo

200UniversityAvenueWest,Waterloo,Ontario,N2L3G1(Canada)E-mail:lfnazar@uwaterloo.ca[+]Theseauthorscontributedequallytothiswork.

Angew.Chem.Int.Ed.2015,54,3431–3448

3432

??2015Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim

SodiumIonBatteries

AngewandteChemiedrivingdevelopmenttowardsmoresustainableelementssuchexcitingpossibilityofaroom-temperatureNa/ScellcloserasFeandMn.

toreality,althoughfurtherdevelopmentsarenecessary.

GiventhehighabundanceandlowcostofsodiumaswellOntheotherhand,sodiumionbatteries(NIBs)basedonasitsverysuitableredoxpotential(Eo(Na+/Na)=à2.71Vversusintercalationmaterialsthatemploynon-aqueouselectro-thestandardhydrogenelectrode)whichisonly0.3Vabovelytes—akintolithiumionbatteries—werefirstexploredinthatoflithium,meaningthereisonlyasmallenergypenaltytothemid-1980s.Theyhaveundergonearenaissanceinthelastpay—rechargeableelectrochemicalcellsbasedonsodiumholdfewyears,witharemarkablenumberofnewmaterialsandmuchmorepromiseforEESapplications.Theelectrochem-approacheshavingbeenreported.Theyofferahigherenergyistryofsodiummaterialshasalonghistory.Fiftyyearsago,thedensitythanaqueousbatteriesandlowercostthanLiiondiscoveryofthehigh-temperaturesolid-statesodiumionicbatteries,withsomenowapproachingtheenergydensityofconductorNaAl11O17(b“-alumina)providedaleapforwardinthelatter.Here,wediscussrecentresearchhighlightsofthefieldsofsolid-stateionicsandsodiumelectrochemistry,[5]sodiumionbasedelectrochemistry,withafocusonrecentalongwithNASICON(natriumsuperionconductor:NaxM2-studiesonintercalationcompoundsforpositiveelectrode(XO4)3;X=P5+,Si4+,S6+,Mo6+,As5+)adecadelater.[6]Asmaterials(layeredtransition-metaloxidesandpolyanionicasolid-stateelectrolyte,b”-aluminawascriticaltothecompounds);computationalstudiesthatprobeNa+iondevelopmentoftwosodiumionbatteries:thesodium/sulfurmobilityinsolid-statelattices;developmentsinopen-frame-(Na-S)andZEBRAcells(zero-emissionbatteryresearchworkmaterials;andnegativeelectrodematerials(hardactivities)thatarebasedonNa/NiCl2.Thesecells,particularlycarbons,alloys,andmetaloxides).Abriefoverviewonthetheformer,arenowcommercialtechnologiesusedtodayforresearchofnon-aqueousandionicliquid-basedelectrolytesisgridstorage.Theyoperatenear3008C,wheresodiumandthealsopresented.Wenotethatafewexcellentreviewarticlespositiveelectrodesaremolten,andtheionconductivityofthehaveappearedin2012and2013,[9–12]soouremphasisisonthesodiumb“-aluminamembraneisenhanced.SafetyconcernsmostrecentsignificantissuesandopportunitiesprovidedbywithNa/Stechnology,andcostlyheatingrequirementsandthefield.AlthoughaqueousNaionbatteriesalsohaveseveraltemperaturemanagementdifficultiesinZEBRAcellsareapparentadvantagesforlarge-scalestorage,acomprehensiveinspiringmuchefforttolowertheiroperatingtemperatures.reviewonthistopichasjustbeenpublished,[13]andwereferNASICONhasbeenexploitedasasolid-stateelectrolytethereaderthere.

membraneforNabatteriesthatoperatebetween110and1308Candwhichalsoencompassamoltensodiumelec-trode.[7]Fundamentalresearchinsolid-stateNaionconduc-2.OverviewoftheSodiumIonCell

torshasloweredtheoperatingtemperatureevenfurther.Room-temperatureoperationofanall-solid-staterecharge-ThedevelopmentofsodiumioncellsparalleledthatofLiablesodiumbatterybasedonasulfideglass-ceramicelectro-ionbatteriesthroughthe1980s.[14–21]Thehigherenergylytehasrecentlybeendemonstrated.[8]Thisbringsthe

densityofthelithiumcounterparts—owingtotheirhigher

DipanKundureceivedhisPhDin2012VictorDuffortreceivedhisPhDin2012fromtheETHZürichinthegroupofProf.fromtheUniversit?deCaenBasse-Norman-ReinhardNesper.Currently,heisapostdoc-die,France,ontheoxygenstoichiometryandtoralresearcherinthegroupofProf.structuralcharacterizationofmagneticironLindaF.NazarattheUniversityofWater-oxides.HejoinedthegroupofProf.LindaF.loo.HisresearchinterestsareinfunctionalNazarin2013,andhasbeenfocusingonmaterialdevelopmentforelectrochemicalthedevelopmentofalternativetechnologiesenergystorageapplications,inparticularoftoLiionbatteries.HiscurrentsresearchNaionandLi-O2batteries.interestsresideinthediscoveryofnewcathodematerialsforsodiumandmagne-siumbatteries.ElaheTalaieiscarryingoutPhDresearchLindaNazarwasborninVancouver,(electricalengineering;Nanotechnologypro-Canada,andreceivedherPhDfromthegram)attheUniversityofWaterloounderUniversityofToronto.AfterapostdoctoralthesupervisionofProf.LindaF.Nazar.fellowshipatExxonCorporateResearchinSince2010shehasbeenactivelyinvolvedinAnnandale,NewJersey,shemovedtothethedevelopmentofcathodematerialsforLiUniversityofWaterloo,wheresheisaProfes-ionandNaionbatteries.ShecurrentlysorofChemistryandElectricalEngineering,worksonthesynthesisandcharacterizationandafellowoftheRoyalSocietyofCanada.oflayeredoxidesascathodematerialsforSheholdsaSeniorCanadaResearchChairNaionbatteries.inSolid-StateEnergyMaterials.Herresearchfocusesonnanostructuredintercala-tionelectrodesforsodiumionbatteries,solid-stateelectrolytes/batteries,andLi-SandLi-O2batteries.Angew.Chem.Int.Ed.2015,54,3431–3448??2015Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim

www.angewandte.org3433

.AngewandteReviews

potentialandlowermass—resultedintheirdominationofbothresearchandcommercialfields,andledtotheexponen-tialgrowthintheportableelectronicsmarketinthe1990s.However,forstationaryapplications,wheregravimetricenergydensityisnotsomuchofaconcern(suchasgridorminigridstorage),Naionbatteriesareanequallyviabletechnology.RecentreportshaveevenshownthatthesecellscancompetewithLiionbatteriesintermsofenergydensity(seeSection3.1).Nonetheless,severalbarriersneedtobeovercomebeforesuchcellscanbecomeapractical,commer-cialreality.Dependingonthecellchemistry,thesebarriersincludeinsufficientcyclelifeandtheneedforthediscoveryofnewmaterialsforboththepositive(andespecially)negativeelectrodestoincreasetheperformance.Researchinsodiumionbatterieshasincreaseddramaticallyinthelastfewyearsandisnowinfull-swingtoaddressthesehurdlesandtherebyenablethisemergingenergystoragetechnologytobecomeavailableinthecomingyears.

TheprincipleofcelloperationisthesameasitsLiioncousin:sodiumionsareshuttledbetweenthepositive(cathode)andnegative(anode)electrodesthroughanon-aqueous(oraqueous)Naionelectrolytethatiscontainedbetweentheelectrodes(Figure2)ondischargeandcharge.[11]

L.F.Nazaretal.

Atypicalworkingsystemisillustrated,wheretheNa+ionelectrolyteisanon-aqueoussystemcomprised,forexample,ofNaClO4inapolarsolventsuchaspropylenecarbonate.Duringcharge,sodiumionsareextractedfromthehighvoltagepositiveelectrode,withaworkingpotentialaroundorabove3.0VversusNa+/Na(seeFigure2b),andareinsertedintothelowvoltagenegativeelectrode,whoseworkingpotentialisideallylowerthan1.0VversusNa+/Na(seeFigure2b).Oncharge,theelectronsarepumped“uphill”,thermodynamicallyspeaking,fromthepositivetotheneg-ativeelectrodethroughtheexternalcircuit.Theconverseoccursondischarge:thefavorablefreeenergyoftheredoxcoupleallowsthereactiontoproceed“downhill”,thusdeliveringenergytothedevicethatisbeingpoweredbythebattery.

FullNaioncellsdonotemployelementalsodiumasthenegativeelectrode:theyarecomprisedofhardcarbonsormetaloxideintercalationcompounds.ThenegativeelectrodeisoneofthemosttroublesomecomponentsbecausetypicalgraphiticcarbonsemployedinLiioncellsdonotintercalateNa+ions(Section5.1).Thediscoveryofsuitableanodematerialsisamajorchallenge.Furthermore,theNa+ionsarenotreversiblyshuttledbetweentheelectrodeswith100%Coulombicefficiencybecauseofsidereactionsbetweentheelectrolyteandelectrodesurface.Thesecanarisebyreactionoftheelectrolytewiththeoxidizingtransition-metaloxideformedatthecathode,and/orwiththehighlyreducingsodiatedhardcarbon(orlow-potentialmetaloxide)gener-atedattheanode.Forpracticalcells,thesehurdlesmustbeovercome.Thenextsectionstartswiththeoutstandingrecentdevelopmentsinpositiveelectrodematerialsbyavarietyofapproaches,andthechallengesthatarestilltobefacedinthis“highpotential”area.

3.CathodeMaterialsforHighPerformanceSodiumionBatteries

3.1.LayeredSodiumTransition-MetalOxides

Majoreffortshavebeendevotedtothesearchforhigh-performancecathodematerialsinlayeredsystemsofthetypeAMO2(solidsolutionsofNaCoO2,NaMnO2,NaFeO2,NaNiO2).[22–25]Thesematerialsaresoughtafterfortheirhighredoxpotentialsandenergydensities.Thedrivingforce,atleastinpart,derivesfromseveraladvantagesassociatedwithlow-cobalt-contentmaterials,especiallythosebasedonenvironmentallyfriendlyironandmanganese.

Sodiummetaloxidesexistasoneofseveralpolytypeswhichdifferinthestackingoftheclose-packedoxygenlayers.FollowingthenotationofDelmas,[26]thesearedesignatedasO3(ABCABCstacking),P2(ABBAstacking),andP3(ABBCCAstacking).TheNa+ionadoptsdifferentcoordi-nationenvironments(P=prismaticandO=octahedral)dependingonthepolytype.NaMO2materials(unliketheirlithiumanalogues)readilyformthe“ideal”orderedO3-typelayeredstructureasaresultofthelargedifferenceintheionicsizesoftheNa+andthetransition-metalcations,whichdrivesthesegregationoftheAandMintoalternatinglayers.The

Angew.Chem.Int.Ed.2015,54,3431–3448

Figure2.a)Operatingprincipleofatypicalnon-aqueousoraqueoussodium-ionbattery.Sodiumionsmigratebackandforthintheelectrolytebetweenthenegativeandpositiveelectrodesupondis-chargeorcharge,andelectronflowcounterbalancestheionflowwithintheelectrodematerialsandexternallythroughtheouterelectricalcircuit.Thepotentialdifferencebetweenthepositiveandnegativeelectrodesdefinesthecellvoltage.b)Relativeworkingpoten-tialoftypicalelectrodematerialsfornon-aqueousandaqueoussodium-ionbatteries.

3434www.angewandte.org

??2015Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim

SodiumIonBatteries

AngewandteChemievacancy-dominatedP2-typeNa0.67MO2oxidesarealsoofthephasetransitionfromP2toOP4uponcharge.Asconsiderableinterest.EarlyworkdemonstratedthatP2-typeevidencedbyX-rayabsorptionspectroscopyandM?ssbauerNa0.66Co0.66Mn0.33O2displayspredominantlysolid-solutionspectroscopy,theFe3+/Fe4+redoxcoupleisactiveinthebehavioronextractionofthesodium.[27]RecentreportsdesodiationprocessesofP2-Na2/3Mn1/2Fe1/2O2(incontrasttohavehighlightedmanganeseandironoxides,andtheirlithiumironoxideswhereoxygenevolutionseemstobethecombinationswithaternaryelement;thesematerialshavefavorableprocessathighpotentials).[34]Thisauspiciousbeenshowntobeamongstthemostviableforpositivematerialshowsmuchpromiseforfuturedevelopment,butelectrodes,asdiscussedbelow.

theexactchargecompensationmechanismisnotfullyLayeredNaMnO2,oneofthefirstmaterialsinvestigated,resolvedtodate.AssumingaMn4+oxidationstateintheexhibitstwostructures,[28,29]buta-NaMnO2ismorestable.[30]chargedsample(4.2V,x=0.13inNaxMn0.5Fe0.5O2),moreItcrystallizesintheO3structure.Investigationofitselectro-than70%oftheironionsareexpectedtobeoxidizedonthechemicalpropertiesshowedthat0.8Nacanbereversiblyde/basisofchargebalance(Na+4+30.13Mn+40.5Fe0.37Fe0.13O2).How-intercalatedwithgoodcapacityretention,equivalenttoever,muchlessFe4+wasdetectedbyM?ssbauerspectroscopyacapacityof200mAhgà1.[31]Thevoltageprofilesexhibitinthesamplechargedto4.5V.Therefore,theextractionofpronouncedstepwiseprocessesindicativeofstructuraltran-sodiumfromP2-NaxMn0.5Fe0.5O2maybeaccompaniedbyonesitions.ThesearemorecommoninNaionthaninLiionormorecharge-compensationmechanisms;mostpossiblyintercalationoxidesbecauseofNa-vacancyorderinginter-oxygenremovaland/oroxidationofmanganeseionstohigheractionswhicharestrongerduetothelargerradiusofasodiumoxidationstatesthantetravalent.Theseunresolvedquestionscation.Theseinvolvetheglidingofoxygenplanestoinspirefurtherexplorationforin-depthunderstandingofaccommodateNainbothoctahedralandtrigonalprismaticthesesystems.

environments.ThelattercanonlybeachievedinanO3Inthesearchforelectrodematerialswithstabilitiesstackingbyslidingsomeoftheoxygenlayers.GlidingoftheacceptableforpracticalNaionbatteries,Mengandco-oxygenlayeralsoallowsoptimizationofNacoordinationatworkersconductedacomprehensivestudyontheeffectofLieachstoichiometry—whichisastrongerdrivingforcethaninsubstitutiononthestructuralandelectrochemicalpropertiesthelithiatedoxides.

ofaP2structuredbinarysystem,Nax[LiyNizMn1àyàz]O2(0

upto4.4V,althoughthebroadeningofpeaksonchargingimpliesemerginglocalstackingfaultsasaresultofin-planeglide.DelayintheoccurrenceoftheP2-O2phasetransitionisexplainedbythepresenceofmoreNa+ionsinthestructure(includingatthechargedstate)becauseofsubstitutionoflow-valenceLiions(Na0.8LiyMe1àyO2vs.Na0.67MeO2).Exsitusolid-stateNMRspectroscopyshowedthatLiionsaremostlylocatedinthetransition-metallayersassynthesizedbuttendtomigratetoNalayersuponchargetohighervoltagessinceoctahedralandtetrahedralpositionsareavailableasstackingfaultsdevelop.However,theLimigrationprocessisrever-sible.

Figure3.Galvanostaticcharge/dischargecurveofP2-Na2/3Mn1/2Fe1/2O2AlsoonthetopicofLi-richlayeredsodiummetaloxides,inaNacellcycledinthevoltagerangeof1.5–4.3Vatarateof

12mAgà1.ReproducedfromRef.[32]withpermission.Copyright2012,Komabaandco-workersrecentlyreportedahighlyreversibleNaturePublishingGroup.

capacityof200mAhgà1forP2-Na5/6[Li1/4Mn3/4]O2cycledat1.5–4.4V,whichishigherthanitstheoreticalcapacitybasedonMn3+/Mn4+redox.Alongvoltageplateauat4.1VattheThecellretainsabout70%ofitsreversiblecapacitywhenfirstchargecharacterizesthissystem,[36]similartolayeredthecyclingrateisincreasedfromC/20to1C.Thesuperiorlithium-richoxides.[37,38]NotransitiontoO2orOP4phasesatratecapabilityofP2-Na2/3Mn1/2Fe1/2O2comparedtothatofthefullychargedstateoccurs,similartotheP2-manyotherlayeredtransitionmetaloxidesiscorrelatedtoitsNa0.8[Li0.12Ni0.22Mn0.66]O2phasediscussedabove.Interestingly,smoothcharge/dischargevoltageprofile,whichsuggestssuperlatticepeaksassociatedwithLi/Mnorderingdisappearafacilede/intercalationreactionandthelackofpronouncedwhenthecellischargedto4.4V,whichindicatesanin-planestructuraltransitions.ThesedominateinNaxCoO2,forcationrearrangement.Asaconsequenceofsimilaritieswithexample.[33]P2-Na2/3Mn1/2Fe1/2O2retainsover75%ofitslithium-richLi2MnO3-basedelectrodes,(highcapacitiesasso-initialcapacityafter30cycles.Capacityfadeisattributedto

ciatedwithhighvoltageplateausanddisappearingsuper-Angew.Chem.Int.Ed.2015,54,3431–3448

??2015Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim

www.angewandte.org

3435


Na ion battery-Review-Angew Chem.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:信息安全专业人才培养方案

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219