?2???????5?????????????????将(?1,?2,?3)单位化得:p1??0?,p2?????1?????5????2???5????0??1?5?13053023026?16161??1??306????5???1,p??3??306??2??2??30??6?????, ?????Q???????????p1, p2, p3?????? . ????八、(6分)设A是n阶正定矩阵,E是n阶单位矩阵,证明:E?A?1. 证明:因为A是正定矩阵,所以A的特征值?i?0(i?1,2,?,n)
方法一:又A?E的特征值为?1?1,?2?1,?,?n?1且?i?1?1(i?1,2,?,n),
n 所以 A?E??i?1(?i?1)?1.
??1 ? ?2 T?1?方法二:因为存在正交阵Q使QAQ?QAQ?? ??? ?n???,??0(i?1,2,?,n)
i?????1+1 ??? ?2+1 ?Q?1,??0(i?1,?2,n,, 于是A?E?Q?i? ???? ??1n??n 所以A?E??i?1(?i?1)?1 .
6