2024-2025第二学期《线性代数》试卷参考答案

2025-06-22

2006-2007学年第二学期《线性代数》试卷参考答案

一、填空题(每小题3分,共15分)

?1?1?1.已知A??1??2011210?130???1?,设A(j?1,2,3,4)是A中元素a的代数余子式,则

4j4j0??4?A41?A42?A43?A44??3;

01200??0; ?1???3?2.设A?1??0?0400??1???10,则(A?2E)?12???03????1???3.设?1??1??1?????????1???????????????????,则使?1,?2,?3为相互正交的向量组的?2???1?,?3????0???????1??2?1?; ?2??1???注:此答案不惟一.

?x1?kx2?x3?0?4.设齐次线性方程组?2x1?x2?x3?0只有零解,则k应满足的条件

??kx2?3x3?0?1??15.设3阶方阵A有可逆矩阵P使得PAP??0?0??6??1?PAP???????. 2??k?35;

0200???0,A为A的伴随矩阵,则 ?3??3二、选择题(每小题3分,共15分)

1.设A,B为n阶矩阵,下列结论正确的是( D )

(A)(A?B)T?AT?BT,并且(AB)?AB

?1TTT(B)当A,B均为可逆矩阵时,(A?B)(C)若AB?O,则A?O或B?O

?A?1?B?1并且(AB)?1?B?1A?1

(D)若AB?O,且A为可逆矩阵时,则B?O

1

????????????2.已知向量组?1,?2,?3,?4是线性无关向量组,则下列向量组中仍为线性无关向量组的是

( C )

????????????????????????????????????????????? (A)?1??2,? 2??3,? 3??4,? 4??1 (B)?1??2,? 2??,3? ?3?,? ??44?????????????????????????????????????????? ?(C)?1??2,? 2??3,? 3??4,? 4??1 (D)?1??2, ?2??,3 ?3?? ,4??4?????????3.设A是3阶方阵,将A的第一行与第二行交换得B,再把B的第二行加到第三行得C,

则满足PA?C的可逆矩阵P?( A )

?0?(A)1??1?1000??0 (B)?1??223?0?1??0?1001??0 (C)?1??220?0?1??0?10?10??0 (D)?1??210?0?1??0?1000???1 ?1??1003???3 则A,B,C,D?1???1?4.设A??2?3?3??1??3,B?0????03??3??1??3,C?0????03??3??1??3,D?0????01??中不能与对角阵相似的矩阵是( C )

(A)A (B)B (C)C (D)D

????????????5.设A为5?4矩阵,?1,?2为非齐次方程组AX?b的两个不同的特解,?1,?2是对应齐

次方程AX?0的基础解系,对任意常数k1,k2,则下列正确的是( B )

?1?????(A)AX?b的通解是k1?1?k2?2?(?2??1)

2??????????????????(B)AX?b的通解是k1(?1??2)?k2(?1??2)?2?2??1 (C)AX?0的通解是k1(?2??1)?k2(?2??1) (D)AX?0的通解是k1?1?k2(?2??1)

???????????????????????????11bbb231ccc1231dd2三、(8分)计算行列式

aaa23?13.

d1b11bbb231ccc231dd21cc?0c321dd2解:

aaa23?13?aa?0a322b?0b3?13

dd 2

1?aaa231bbb231ccc231ddd231?a0a31b0b31c0c31d1d31?aaa231bbb231ccc231ddd231?aa31bb31c c3?Ⅰ?Ⅱ,

其中:??(d?a)(d?b)(d?c)(c?a)(c?b)(b?a),

11b?ab?a331c?ac?a33???00?(b?a)(c?a)  1      12222b?ab?a c?ac?a 

?(c?a)(c?b)(b?a)(a?b?c),

原式=(c?a)(c?b)(b?a)[(d?a)(d?b)(d?c)?(a?b?c)].

?1?四、(10分)已知AP?PB,其中B??0?0??1??2???4?0?110??1???10,A?PBP?2????61???1??2??6?00?10??0. ??1??00000?10??1??0,P?2????2?1??0??0, ??1??0?110??50,求A及A. ?1??解:P?1A?PBP55?1?PBP?1?1????3五、(12分)向量组?1???2??0??7??2??5????????0????????1??1?,????,????,????,

234??14??0??6????????31??????2?(1)求向量组的秩;

(2)求此向量组的一个极大无关组,并把其余向量用该极大无关组线性表示. 解:

?1?????????????3A??1, ?2,?3,?4 ???2??0701432?1015??1??10????06???2??0730021105??1??20????01???0??00100001023??13?, 1??0???故:(1)向量组的秩为3;

?????????????1??????2?? (2)?1,?2,?3为一个极大无关组,?4??1??2??3.

33 3

六、(18分)当?为何值时,方程组

?2x1??x2?x3?1?无解,有唯一解,或有无穷多个解,并在有无穷多个解时写出方??x1?x2?x3?2??4x1?5x2?5x3??1程组的通解.

2??15?11?5?5?2解:方法一:D??4???4?(??1)(5??4),

当D?0,即??1且???45有唯一解.

?2x1?x2?x3?1?当??1时,方程组为?x1?x2?x3?2,

??4x1?5x2?5x3??1?2?Ab???1?4?1?15?11??1??12???0?0?5?1???0101???1?1??R(A)?R(B)?2?3,所以此时原方00??0B??程组有无穷多解,原方程组的同解方程组为??x1?1?通解为?x2??1?k ?k?R.

??x3?k?10?Ab???4?4??455?5?x1?1?x2?x3??1,

当???45时,B????10???5?10???4?0?5?1???5?450???5?10? 09???55?R(A)?2?3?R(B),此时原方程组无解.

?2?Ab?????4???15方法二:B???11??2??12?????2??6?5?1??????1?5??5?11??03? 0?6???2?????2?5??4????10?11??03?, 09??讨论:1)当???45时,R(A)?2?3?R(B),原方程组无解.

4

2)当??1且???45时,R(A)?R(B)?3,原方程组有唯一解.

3)当??1时,同方法一. 七、(16分)设有二次型

f(x1,x2,x3)?4x2?3x3?2ax1x2?4x1x3?8x2x3(其中a为整数)通过正交变换化

22为标准型f?y2221?6y2?by3,

(1)求常数a,b;

(2)求化二次型为标准型的正交变换.

?0a?2??x1??1解:f(x?1,x2,x3)?(x1,x2,x3)?a44?? y3???x?2X?Q?y y?12?6??24?3???Y???x??3???0a?2??1?(1) ∵??a44????,??6??, ∴0?4?3?1?6?b  ?b??6, ??24?3?????b??0a?2 a44?6b??36,即:3a2?16a?20?0,得a?2(a?10?24?33舍去).?02?2?(2)A???244???, ??24?3??????2?当??E)X?0,解得???1?1,(A1??0??, ?1??????1?当?2?6, (A?6E)X?0,解得?2????5, ???2??????1?当?3??6,(A?6E)X?0,解得?3?????1, ???2?? 5

??y1 ????y?2 , b??????y?3 ?

?2???????5?????????????????将(?1,?2,?3)单位化得:p1??0?,p2?????1?????5????2???5????0??1?5?13053023026?16161??1??306????5???1,p??3??306??2??2??30??6?????, ?????Q???????????p1, p2, p3?????? . ????八、(6分)设A是n阶正定矩阵,E是n阶单位矩阵,证明:E?A?1. 证明:因为A是正定矩阵,所以A的特征值?i?0(i?1,2,?,n)

方法一:又A?E的特征值为?1?1,?2?1,?,?n?1且?i?1?1(i?1,2,?,n),

n 所以 A?E??i?1(?i?1)?1.

??1   ?  ?2  T?1?方法二:因为存在正交阵Q使QAQ?QAQ?? ???     ?n???,??0(i?1,2,?,n)

i?????1+1   ???  ?2+1  ?Q?1,??0(i?1,?2,n,, 于是A?E?Q?i? ????     ??1n??n 所以A?E??i?1(?i?1)?1 .

6


2024-2025第二学期《线性代数》试卷参考答案.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:发挥政治核心作用 引领企业科学发展 - 图文

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219