《概率论与数理统计》复习题及答案

2025-07-19

《概率论与数理统计》复习题

一、填空题

1. 已知P(AB)?P(A),则A与B的关系是 独立 。 2.已知A,B互相对立,则A与B的关系是 互相对立 。

3.A,B为随机事件,则P(AB)? 0.3 。 P(A)?0.4,P(B)?0.3,P(A?B)?0.6,4. 已知P(A)?0.4,P(B)?0.4,P(A?B)?0.5,则P(A?B)? 0.7 。

25.A,B为随机事件,P(A)?0.3,P(B)?0.4,P(AB)?0.5,则P(BA)?____。

36.已知P(BA)?0.3 ,P(A?B)?0.2,则P(A)? 2 / 7 。

7.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为 0.75 。 8. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___

26____。 339. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出

1___。 611110. 3人独立破译一密码,他们能单独译出的概率为,,,则此密码被译出的

5343概率为______。

5后不放回,则第2次抽出的是次品的概率为___

11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3

235Cp(1?p)7次成功的概率为______。

12. 已知3次独立重复试验中事件A至少成功一次的概率为

1事件A成功的概率p?______。

319,则一次试验中27c35813.随机变量X能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量X分布律为P(X?k)?,k?1,2,3,4,5,则P(X?3X?5 )?_0.4_。

15x??2,?0?X?15.F(x)??0.4?2?x?0,是X的分布函数,则X分布律为__??pi?1x?0?0? ?__。0.40.6??2?0,x?0??16.随机变量X的分布函数为F(x)??sinx,0?x??,则

2?1,x???2?P(X??3)?__3__。 217. 随机变量X~N(1.04,1),P(X?3)?0.975,P(X??0.92)?__0.025 。 18. 设X~N(3,22),若P(X?C)?P(X?C), 则C?__3__。(注:?(0)?0.5) 19.设X?N(?,?2),其分布函数为F(x),则有F(?+x?)?F(??x?)= 1 。

?X???20.已知随机变量X的分布律为?42?P0.20.7??Y22分布律为___??P0.3??1?__。 ?0.7?3???则随机变量函数Y?sinX的4?,?0.1?21. 若X服从的分布是N(0,1),则2X+1服从的分布是 N(1,4 ) 。 22.总体X的密度函数f(x)?1,则样本(X1,X2,X3)的联合密度函数为:

?(1?x2)__f(x1,x2,x3)?1_。 3222?(1?x1)(1?x2)(1?x3)23.设X~N?2,9?,Y~N?1,16?,且X,Y相互独立,则X?Y~__N(3,52)___。

)24.若X?B(5,p),Y?B(8,pp ) 。,X,Y独立,则X?Y服从的分布是 B(13,

25.X?P(8),Y?P(10),X,Y独立,则X?Y服从的分布是 P(18) 。 26. 随机变量X?B?5,0.2?,则E(2X?3)?__5__,D?2X?3??__3.2__,。 E(2X2?1)?__2.6__,

27. 随机变量X?U?0,2?,则E??X?3??__-4__,D??X?3??__13__。

28. 设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为??3的泊松分布,记Y?X1?2X2?3X3,则

EY?__12___。

29.总体X以等概率

1?取值1,2,?,?,则未知参数?的矩估计量为__2X-1___。 30.设X1,X2,......,Xn为X的样本,X?B(5,p),则关于p的矩估计量是 X5 。

二、选择题

1.设A,B为两随机事件,且B?A,则下列式子正确的是( A )。 (A)P(A?B)?P(A) (B)P(AB)?P(A) (C)P(BA)?P(B) (D) P(B?A)?P(B)?P(A)

2.事件A,B满足:P?AB??0.2,P?B??0.5,P?AB??0.8,则P?A?B??( A )。 (A)0.7 (B)0.3 (C)0.6 (D)0.8

3.若P(B|A)?p;P(A|B)?q;则P(AB|A?B)?(C)(A)pqp?qpqpq P?q(B)pq(C)p?q?pq(D)p?q?pq4.设事件A,B独立,且A与B互斥,则下列式子一定成立的是( D )。 (A)P?AB??0 (B)P?AB??0 (C)P?AB??P?A?P?B? (D) P?A??1或P?B??1

5.随机变量 X 的概率分布为:P(X?k)?12k(k?1,2,?),则 X 取偶数概率为(C(A)15(B)14(C)13(D)126.连续型随机变量分布函数F(x)???a?be?x,x?0,其中常数a,b值为( C )。

?0,x?0)(A)a?1,b?1 (B)a?0,b?1 (C)a?1,b??1 (D)a??1,b?1 7.若f(x)?2x可以成为某随机变量X的概率密度函数,则随机变量X的可能值充满区间( B ),

(A)(0,0.5) (B)(0,1) (C)[0,??) (D)(??,??) 8. 当随机变量X的可能值充满区间( A ),则f(x)?cosx可以成为某随机变量

X的密度函数。

??(A)[0,] (B)[,?] (C)[0,?]

2237 (D)[?,?]

249. 随机变量X服从参数??1/8的指数分布,则P(2?X?8)?( D )。 (A)?8?x82x1?128?8?1edx (B)?edx (C)(e4?e?1) (D)e4?e?1

88210. 随机变量X服从X?N??,?2?,若?增大,则P(X???3?)( D )。 (B)单调增大 (B)单调减小 (C)增减不定 (D)保持不变 11. 随机变量X的概率密度f(x)?1,则Y?2X的概率密度是( B )。

?(1?x2)(A)

1121arctany (B) (C) (D)222??(1?4y)?(4?y)?(1?y)12. 关于联合分布与边缘分布的关系,以下结论错误的是( C )。 (A)二维正态分布的两个边缘分布都是正态分布 (B)二维均匀分布的两个边缘分布未必是均匀分布 (C)边缘分布可以唯一的确定联合分布 (D)联合分布可以唯一的确定边缘分布

13. 设(X,Y)的联合分布函数为F(x,y),则其边缘分布函数FX(x)?( B )。 (A)limF(x,y) (B)limF(x,y) (C)F(0,y) (D)F(x,0)

x???y???1?1??0?0??14. 随机变量X,Y相互独立,且X~?则必有( C )。 ,Y~?0.20.8??0.20.8??,

????P(X?Y)?0 P(X?Y)?0.68 P(X?Y)?1。(A)X?Y (B)(C)(D)

15. 已知离散型随机变量X服从二项分布,且EX?2.4,DX?1.44,则二项分布的参数n,p的值为( B )。

(A)n?4,p?0.6 (B)n?6,p?0.4 (C)n?8,p?0.3 (D)n?24,p?0.1

16.已知随机变量离散型随机变量X的可能取值为x1??1,x2?0,x3?1,且

EX?0.1,DX?0.89,则对应于x1,x2,x3的概率p1,p2,p3为( A )。

(A)p1?0.4,p2?0.1,p3?0.5 (C)p1?0.5,p2?0.1,p3?0.4

(B)p1?0.1,p2?0.4,p3?0.5 (D)p1?0.4,p2?0.5,p3?0.1

17.设随机变量X~f(x)?0.5e?0.5x,(x?0),则下列计算正确的是( C )。 (A)E(X)?0.5 (B)D(X)?2 (C)E(2X?1)?5 (D)D(2X+1)?9

??e??xx?0,18.设随机变量X密度函数为f?x???,已知E(X)?1/2,若

其他?xY~P(?),则下列计算正确的是( D )。

(A)E(Y)?2,D(Y)?4 (B)D(?2Y?2)??6 (C)E(Y2)?4 (D)E(Y+1)2?11

19. 已知总体X服从参数?的泊松分布(?未知),X1,X2,......,Xn为X的样本,则( C )。

1n1n(A)?Xi??是一个统计量 (B)?Xi?EX是一个统计量

ni?1ni?1


《概率论与数理统计》复习题及答案.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:高中地理 1.3《人类活动对区域地理环境的影响》教案(3) 中图版

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219