哈尔滨理工大学高等教育自学考试毕业(设计)论文 第1章 绪论
1.1 课题背景
1.1.1 课题的研究的背景和意义
随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化已是现代温度控制系统发展的主流方向。特别是近年来,温度控制系统已应用到人们生活的各个方面,但温室温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。针对这种实际情况,设计一个温室温度控制系统,具有广泛的应用前景与实际意义。
温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类品质就没有保障。因此,各行各业对温度控制要求都越来越高。可见,温度的测量和控制是非常重要的。
目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。由于单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能。
1.1.2 课题的设计目的和功能
本设计的内容是温度测试控制系统,控制对象是温度。温度控制在日常生活及工业领域应用相当广泛,比如温室、水池、发酵缸、电源等场所的温度控制。而以往温度控制是由人工完成的而且不够重视,其实在很多场所温度都需要监控以防止发生意外。针对此问题,本系统设计的目的是实现一种可连续高精度调温的温度控制系统,它应用广泛,功能强大,小巧美观,便于携带,是一款既实用又廉价的控制系统。
1
哈尔滨理工大学高等教育自学考试毕业(设计)论文 1.2 国内外温室控制技术发展概况
1.2.1 国外温室控制技术的发展
温室是一种可以改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的场所。它以采光覆盖材料作为全部或部分结构材料,可在冬季或其他不适宜露地植物生长的季节栽培植物。温室生产以达到调节产期,促进生长发育,防治病虫害及提高质量、产量等为目的。而温室设施的关键技术是环境控制,该技术的最终目标是提高控制与作业精度。
从国外温室控制技术的发展状况来看,温室环境控制技术大致经历三个发展阶段: 1 手动控制
这是在温室技术发展初期所采取的控制手段,其时并没有真正意义上的控制系统及执行机构。生产一线的种植者既是温室环境的传感器,又是对温室作物进行管理的执行机构,他们是温室环境控制的核心。通过对温室内外的气候状况和对作物生长状况的观测,凭借长期积累的经验和直觉推测及判断,手动调节温室内环境。种植者采用手动控制方式,对于作物生长状况的反应是最直接、最迅速且是最有效的,它符合传统农业的生产规律。但这种控制方式的劳动生产率较低,不适合工厂化农业生产的需要,而且对种植者的素质要求较高。 2 自动控制
这种控制系统需要种植者输入温室作物生长所需环境的目标参数,计算机根据传感器的实际测量值与事先设定的目标值进行比较,以决定温室环境因子的控制过程,控制相应机构进行加热、降温和通风等动作。计算机自动控制的温室控制技术实现了生产自动化,适合规模化生产,劳动生产率得到提高。通过改变温室环境设定目标值,可以自动地进行温室内环境气候调节,但是这种控制方式对作物生长状况的改变难以及时做出反应,难以介入作物生长的内在规律。目前我国绝大部分自主开发的大型现代化温室及引进的国外设备都属于这种控制方式。 3 智能化控制
这是在温室自动控制技术和生产实践的基础上,通过总结、收集农业领域知识、技术和各种试验数据构建专家系统,以建立植物生长的数学模型为理论依据,研究开发出的一种适合不同作物生长的温室专家控制系统技术。温室控制技术沿着手动、自动、智能化控制的发展进程,向着越来越先进、功能越来越完备的方向发展。由此可见,温室环境控制朝着基于作物生长模型、温室综合环境因子分析模型和农业专家系统的温室信息自
2
[1]
哈尔滨理工大学高等教育自学考试毕业(设计)论文 动采集及智能控制趋势发展。
1.2.2 我国温室控制技术的发展
至2010年,蔬菜、花卉设施栽培面积达到5000万亩,其中日光温室面积250多万亩,其余为塑料大棚和中小棚。日光温室是近十几年来快速发展起来的,经过不断地在建筑结构、环境调控技术和栽培技术等方面进行改进,使得在北纬40一41o以上的严寒地区,在完全不加温或仅有极少量加温的条件下,实现了严冬季节喜温果菜的生产。日光温室基本采用土壤栽培方式。
我国现有大型温室面积约10000公顷,其中我国自行设计建造的约有50多公顷,从荷兰、日本、美国、以色列等国引进的约140公顷(包括2009年引进的温室)。在已确切统计的730公顷引进温室中,大多数为大型连栋温室,是近十几年出现并得到迅速发展的一种温室形式。其中大型的连栋塑料温室约占2/3以上,其余为玻璃温室。建设在南方的大型温室以生产花卉为主,北方的则以栽培蔬菜为主。少部分温室用于栽培苗木。
近年来,温室无土栽培技术逐步发展,1990年为7公顷,1993年为50公顷,1996年为100公顷,2000年为150公顷,2005年为500公顷,2010年为1000公顷。基本格局是北方地区以固体基质培为主,华东地区以营养液膜技术浅水培为主。少部分温室用于栽培苗木。
而随着温室大棚的发展,环境控制计算机模拟模型、作物生长发育规律模拟模型研究向实用化方向发展,温室复合环境优化控制研究一直是各国温室技术研究的核心。
1.3 选题的目的和意义
温室是观赏植物栽培生产中必不可少的设施之一,不同种类观赏花卉对温度及湿度等生长所需条件的要求也不尽相同,为它们提供一个更适宜其生长的封闭的、良好的生存环境,以提早或延迟花期,最终将会给我们带来巨大的经济效益。随着现代科技的发展,电子计算机已用于控制温室环境。该系统可自动控制加热、降温、通风。根据需要,通过按键将温度信息输入MCU,根据情况可随时调节环境。温室环境自动化控制系统在大型现代化温室的利用,是设施栽培高新技术的体现。 本文将使用8051型单片机对温度及湿度控制的基本原理实例化,利用现有资源设计一个实时控制温室大棚温度、湿度等的控制系统。目的是通过这次毕业设计,让我们将课本知识与实践相结合,更加深刻的理解自动控制的运作模式及意义,也能够将所学知识和技能更多的运用于生活和工作中,学以致用。
3
哈尔滨理工大学高等教育自学考试毕业(设计)论文 第2章 温室大棚自动控制系统的控制方案设计
目前 ,我国农村使用的简易日光温室绝大部分采用手动控制 ,生产效率低下 ,单位产品的生产成本偏高。随着温室产业的发展 ,温室作物趋向于多样化 ,对温室的控制要求也随之提高 ,手动控制因其控制精度低已开始不能满足温室生产的需求 ,需要设计一种控制器减少手动控制。而当今国内常见的智能温室系统都是采用工控机或者 PLC方案 ,价格昂贵 ,较大部分用户经济能力承受不起。因此 ,在系统的设计过程中要充分考虑用户的经济承受能力 ,减少温室设计中的各种成本 ,提高劳动生产率 ,这在温室上具有较为深远的意义。为此 ,针对简易日光温室对温度、 湿度以及光照度等环境因素的控制要求 ,设计和开发了基于 STC89C58RD +单片机的低成本温室自动化控制系统。
2.1 控制方案设计
植物的生长是在一定环境中进行的 ,在生长过程中受到环境中各种因素的影响 ,其中对植物生长影响最大的是温度。环境中昼夜的温度,对植物生长极为不利。统就是利用价格便宜的一般电子器件来设计一个参数精度高 ,控制操作方便 ,性价比高的应用于农业种植生产的温室大棚测控系统。该系统由单片机对温度等参数进行巡回测量 ,并对测量的结果进行优化补偿 ,并进行调控 ,此外主控制器还可以同时完成系统参数测量 ,数据存储等,硬件总体设计结构如图2.1所示。由图2.1可知 ,整个系统采用 STC89C58RD +单片机为处理核心 ,通过温室现有的各种传感器检测温室的温度环境因素 ,经由控制系统的 8路模拟量、数字量输入接口传输到 CPU中 ,并与系统设定值进行比较、判断、处理以及相关数据的存储。然后将 CPU处理后各种控制结果通过 16路开关量输出口传送到电机和电磁阀等执行机构上 ,从而实现对温室的控制。温室独立控制系统上还包扩各种人机界面和数据传输接口 ,实现了人机交换方式以及实时参数的设定。本控制系统采用宏晶科技公司生产 STC 51系列单片机控制器 ( STC89C58RD + )。该单片机具有强加密性 ,无法解密,具有超强的抗干扰性能 ,且芯片内部自带看门狗。STC89C58RD +单片机最高时钟频率为0~80MHz,32k的 Flash存储器、1280字节的RAM、拥有 P4口适合需要多 I/O的系统设计、16k字节的E2PROM可以提供比其它单片机更多的存储空间。其不需要依靠任何烧录器 ,直接通过电脑上的串口以ISP方式进行烧录。这种单片机的烧录方式操作简单容易 ,程序的调试灵活 ,修改方便 ,且不受地域、时间和环境的影响和限制 ,可为以后产品的改进和升级提供方便。
[2]
4
哈尔滨理工大学高等教育自学考试毕业(设计)论文 图2.1 总体结构图
本系统的电路设计方框图如图2.2所示,它由三部分组成: 1 控制部分主芯片采用单片机AT89S51
控制单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用,系统应用三节电池供电。
2 显示部分采用3位LED数码管以动态扫描方式实现温度显示
显示电路采用3位共阳LED数码管,从P0口送数,P2口扫描。 3 温度采集部分采用DS18B20温度传感器 LED显示
DS18B20 单片图2.2 结构图 5
机 指示灯