读书报告

2025-08-02

读书报告

数控机床正在向精密、高速、复合、智能、环保的方向发展。精密和高速加

工对传动及其控制提出了更高的要求,更高的动态特性和控制精度,更高的进给速度和加速度,更低的振动噪声和更小的磨损。问题的症结在传统的传动链从作为动力源的电动机到工作部件要通过齿轮、蜗轮副,皮带、丝杠副、联轴器、离合器等中间传动环节,在这些环节中产生了较大的转动惯量、弹性变形、反向间隙、运动滞后、摩擦、振动、噪声及磨损。虽然在这些方面通过不断的改进使传动性能有所提高,但问题很难从根本上解决,于是出现了“直接传动”的概念,即取消从电动机到工作部件之间的各种中间环节。随着电机及其驱动控制技术的发展,电主轴、直线电机、力矩电机的出现和技术的日益成熟,使主轴、直线和旋转坐标运动的“直接传动”概念变为现实,并日益显示其巨大的优越性。直线电机及其驱动控制技术在机床进给驱动上的应用,使机床的传动结构出现了重大变化,并使机床性能有了新的飞跃。

直线电机进给驱动的主要优点有进给速度范围宽。可从1m/s到20m/min以

上,目前加工中心的快进速度已达208m/min,而传统机床快进速度<60m/min,一般为20~30m/min;速度特性好。速度偏差可达0.01%以下;加速度大。直线电机最大加速度可达30g,目前加工中心的进给加速度已达3.24g,激光加工机的进给加速度已达5g,而传统机床进给加速度在1g以下,一般为0.3g;定位精度高。采用光栅闭环控制,定位精度可达0.1~0.01m。应用前馈控制的直线电机驱动系统可减少跟踪误差200倍以上。由于运动部件的动态特性好,响应灵敏,加上插补控制的精细化,可实现纳米级控制;行程不受限制。传统的丝杠传动受

丝杠制造工艺限制,一般4~6m,更长的行程需要接长丝杠,无论从制造工艺还是在性能上都不理想。而采用直线电机驱动,定子可无限加长,且制造工艺简单,已有大型高速加工中心X轴长达40m以上。

虽然国内研究直线电动机的单位不少,但将直线电动机作为机床或加工中心

进给系统研究的主要有3所大学:广东工业大学成立了“超高速加工与机床研究室”,主要研究和开发“超高速电主轴”和“直线电动机高速进给单元”。他们研究的是直线感应电动机,开发了GD-3型直线电动机高速数控进给单元,额定进给力为2kN,最高进给速度100m/min,定位精度0.004mm,行程为800mm。从90年代后期开始,沈阳工业大学对永磁直线同步电动机进行研究,并制造了推力为100N的样机。他们研究的另一重点是电动机的控制方式及伺服系统,并就此发表了多篇论文。清华大学精密仪器与机械学系制造工程研究所成功地研制了高频响直流直线电动机,行程可达5mm,截止频率大于250Hz,推力达几百牛顿,用于驱动中凸变活塞车床的横向刀架,在实际加工中获得了较好的应用效果。现在正在进行研究的是长行程永磁直线伺服单元,电动机的额定推力为1500N,最高速度60m/min,空载最大加速度1g,行程600mm。

应该看到,在国内,直线电动机特别是机床进给系统中的直线伺服电动机的

研究还处于起步阶段,研究人员和经费明显不足,进展也比较慢,和国外的差距越来越大,加强研究已是迫在眉睫。为了打破国外的技术垄断,必须走技术跟踪和自主开发相结合的道路,加强基础和关键技术的研究。对于数控机床模块化设计、简化机床结构、提高机床性能方面的作用简化结构,促进机床结构模块化;电主轴可以根据用途、结构、性能参数等特征形成标准化、系列化产品,供主机选用,从而促进机床结构模块化;降低机床成本,缩短机床研制周期;一方面,

标准化、系列化的电主轴产品易于形成专业化、规模化生产,实现功能部件的低成本制造;另一方面,采用电主轴后,机床结构的简单化和模块化,也有利于降低机床成本。此外,还可以缩短机床研制周期,适应目前快速多变的市场趋势;改善机床性能,提高可靠性,采用电主轴结构的数控机床,由于结构简化,传动、连接环节减少,因此提高了机床的可靠性;技术成熟、功能完善、性能优良、质量可靠的电主轴功能部件使机床的性能更加完善,可靠性得以进一步提高;实现某些高档数控机床的特殊要求,有些高档数控机床,如并联运动机床、五面体加工中心、小孔和超小孔加工机床等,必须采用电主轴,方能满足完善的功能要求。 电主轴系由内装式电机直接驱动,以满足高速切削对机床“高速度、高精度、高可靠性及小振动”的要求,与机床高速进给系统、高速刀具系统一起组成高速切削所需要的必备条件。电主轴技术与电机变频、闭环矢量控制、交流伺服控制等技术相结合,可以满足车削、铣削、镗削、钻削、磨削等金属切削加工的需要。采用高速加工技术可以解决机械产品制造中的诸多难题,取得特殊的加工精度和表面质量,因此这项技术在各类装备制造业中得到越来越广泛的应用,正在成为当今金切加工的主流技术。高精度、高转速数控机床主轴单元是承载高速切削技术的主体之一,是高精度、高效率高档数控机床的核心功能部件,是航空航天、汽车、船舶、精密模具、精密机械等尖端产品制造领域所需高档加工母机的核心部件。目前国内外电主轴技术的发展十分迅速,各生产厂商都在高可靠性、节能性、高精度、高加工效率、环保性、智能化等方面进行持续的科技攻关,以期形成自身的特色,占领电主轴技术发展的制高点。

目前直线电动机直接驱动技术的发展呈现出以下趋势:机床进给系统用直线伺服电动机,将以永磁式为主导,将电动机、编码器、导轨、电缆等集成,减小

电动机尺寸,便于安装和使用,将各功能部件(导轨、编码器、轴承、接线器等)模块化。注重相关技术的发展,如位置反馈元件、控制技术等,这是提高直线电动机性能的基础。

直线电动机的研究目标是提高电动机性能,满足应用要求。直线电动机的主要性能包括速度、加速度、推力及其波动、定位精度、重复定位精度、机械特性(速度-推力特性)、瞬态性能(速度响应)和热特性等。作为一种机电系统,要提高性能无非可从结构和控制两方面着手。结构设计,直线电动机包括初、次级磁路结构以及支撑、传感测量、冷却、防尘、防护等机械结构;磁路设计,磁路设计最重要的任务是使电动机的推力和推力波动达到设计要求。

电动机内磁场分布的计算是磁路设计的基础。由于结构的特殊性,使得直线电动机存在端部效应,引起磁场的畸变,同时使用硅钢片等软磁材料来聚合磁路,媒质边界曲折交错、磁路复杂、非线性强。如果采用传统的等效磁路法或图解法进行计算,将会产生较大的误差,甚至是不可能的。因此目前普遍采用数值解法—主要是用有限元法(FEM)来计算直线电动机的磁场分布,从而进一步计算推力及其波动以及垂直力等性能。目前市场上已经有很多优秀的电磁场FEM软件可供选用,所以用FEM计算直线电动机电磁场的关键点在于建立精确的有限元模型。

减少推力波动是磁路设计的一个重点也是难点。推力波动产生的原因有:初

级电流和反电动势存在高次谐波、气隙磁密波形非正弦、齿槽效应、端部效应等。通过优化永磁铁的形状和排列方式、降低永磁励磁磁密、初级采用无铁心和多极结构、增加槽的数目、加大气隙等措施可以减小推力波动,但某些措施会造成其它性能的减弱,所以设计时应综合考虑设计要求,达到最佳效果。机械结构设计 机械结构涉及的问题很多,在这里我们只强调一下对冷却系统的研究,因为这个

问题很容易被忽略。其实热特性是直线电动机的一个重要特性,同一型号的电动机有冷却时的推力峰值是无冷却时的两倍,所以电动机冷却系统的好坏对电动机的性能有很大的影响,从冷却系统着手进行优化设计是提高电动机性能的一条捷径。电动机热特性的分析一般也采用有限元法,在计算结果的基础上对冷却进行优化设计。

控制技术是直线电动机设计的另一个重点和难点。直线伺服系统运行时直接

驱动负载,这样负载的变化就直接反作用于电动机:外界扰动,如工件或刀具质量、切削力的变化等,也未经衰减就直接作用于电动机:电动机参数的变化也直接影响着电动机的正常运行:直线导轨存在摩擦力:直线电动机还存在齿槽效应和端部效应。这些因素都给直线电动机的控制带来困难。控制算法中必须要对这些扰动予以抑制或补偿,否则容易造成控制系统的失稳。

总体来说,控制器的设计要达到以下要求:稳态跟踪精度高、动态响应快、抗干扰能力强、鲁棒性好。不同的直线电动机或不同的应用场合对控制算法会提出不同的要求,所以要根据具体情况采用合适的控制方法。目前直线伺服电动机采用的控制策略主要有传统的PID控制、解耦控制,现代控制方法如非线性控制、自适应控制、滑模变结构控制、H∞控制、智能控制如模糊控制、人工智能(如人工神经元网络系统)控制等。

可以看出,直线电动机的控制算法运算量大,而且在高速加工进给系统的实

际应用中实时性很强,因此对整个数控系统提出了很高的要求。要满足这种要求,在优化控制算法的同时,还应采用高性能的硬件。在高速加工中心进给系统中通常采用全数字驱动技术,以PC作为基本平台,DSP实现插补和伺服控制。虽然直线电动机的控制比旋转电动机难度大得多,但他们的电磁特性和运行原理基本

相似,而旋转电动机的伺服控制技术已发展得比较成熟。所以在实验研究阶段,为了尽快建立实验系统,以验证设计的可行性,我们也可以将旋转电动机的伺服控制器改造成直线电动机的伺服控制器,这样可以降低研制的成本和周期,对开发专用的直线电动机伺服控制器也有指导意义。

试验研究理论研究是设计的基础,但要确定电动机的性能,归根到底还要靠具体的试验。旋转电动机的性能试验技术已经很成熟,并且已经标准化,但直线电动机的性能试验还没有统一的方法。因此研究高效精确的直线电动机性能试验方法也是一个很重要的课题,对理论研究也有促进作用。试验研究的关键点在于各项参数如速度、加速度、静态力、动态力、位移、温度等的准确测量,如果需要还要设计专门的试验台。根据理论计算的结果进行设计方案优化,在此基础上制造出样机,然后通过对样机进行性能试验,验证设计的正确性。一台性能优良的直线电动机往往要经过多次反复计算、试验才能制造出来。

相似,而旋转电动机的伺服控制技术已发展得比较成熟。所以在实验研究阶段,为了尽快建立实验系统,以验证设计的可行性,我们也可以将旋转电动机的伺服控制器改造成直线电动机的伺服控制器,这样可以降低研制的成本和周期,对开发专用的直线电动机伺服控制器也有指导意义。

试验研究理论研究是设计的基础,但要确定电动机的性能,归根到底还要靠具体的试验。旋转电动机的性能试验技术已经很成熟,并且已经标准化,但直线电动机的性能试验还没有统一的方法。因此研究高效精确的直线电动机性能试验方法也是一个很重要的课题,对理论研究也有促进作用。试验研究的关键点在于各项参数如速度、加速度、静态力、动态力、位移、温度等的准确测量,如果需要还要设计专门的试验台。根据理论计算的结果进行设计方案优化,在此基础上制造出样机,然后通过对样机进行性能试验,验证设计的正确性。一台性能优良的直线电动机往往要经过多次反复计算、试验才能制造出来。


读书报告.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:企业管理咨询案例分析(全程强化班)1-22_讲义

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219