形如求maxminf1?x1?,f2?x2?,???,fn?xn???.按其变元的个数可分为一??等的问题称为“双重最值问题”
元双重最值问题和多元双重最值问题.在本文中,提供一个常用的结论,取不同的值可得到很多命题.一个结论:设x,y?0,p,q,?为正常数,则
1??11?????(1)min?max?,,px?qy????p?q??1;
?xy???1??11????(2)max?min?,,px?qy????p?q???1. ?xy???证明:设t?max?,???11?1111,px??qy??,则t?,t??x?,y?,
xtty?xy?1pqp?q??1?p?q?t??p?q???1, 所以t?px?qy???????tttt?1?当且仅当x?y????p?q?1??11??11????时取等,即min?max?,,px?qy????p?q???1.
?xy???【题型综述】
一、一元双重最值问题 1.分段函数法:分类讨论,将函数写成分段函数形式,求函数值域即可. 例1:若x?R,求F?x??min?2x?1,x?2,?x?6?的最大值.
解:由2x?1?x?2?x?1,由x?2??x?6?x?2,由2x?1??x?6?x?5,故可得 3?2x?1?x?1??F?x???x?2?1?x?2?,对每一段求值域可知当x?2时,F?x?取得最大值4.
???x?6?x?2?2.数形结合法:分别画出几个函数图象,结合图象直接看出最值点,联立方程组求出最值.
2例2:(2007年浙江数学竞赛)设f?x??min2x?4,x?1,5?3x,求maxf?x?.
??
解:分别画出y?2x?4,y?x2?1,y?5?3x的图象, 得到f?x?的图象如粗体部分所示.
联立y?2x?4,y?x2?1解得???1,2?, 联立y?x2?1,y?5?3x解得??1,2?, 故由图可知当x??1时,f?x?的最大值为2.
二、多元一次函数的双重最值问题 1.利用不等式的性质 例3:设xi?0(i?1,2,3,4,5),最小值.
5?xi?1i?1,??max?x1?x2,x2?x3,x3?x4,x4?x5?,求?的
???x1?x21?解:由???x3?x4?3??x1?x2?x3?2x4?x5?1?x4?1???,
3???x?x45?当x4?0,x3?x5?111,x1?x2?时,?取得最小值. 3332.利用绝对值不等式
2例4:求函数f?x??x?a在区间??1,1?上的最大值??a?的最小值.
解:注意到f??1??f?1?,且2??a??f?0??f?1??a?1?a?a??1?a??1, 所以??a??111,当且仅当a?1?a,即a?时,??a?取得最小值. 2223.利用均值不等式
例5:(2002年北京高中数学竞赛)若a,b?0,求min?max?,,a2?b2??.
???11?ab????
解:设t?max?,,a2?b2?,则t??11?ab??1122,t?,t?a?b, ab11a2?b22ab22??2?t?32, 所以t????a?b??ababab3当且仅当a?b?1??11??,t有最小值32,即min?max?,,a2?b2???32. 32?ab???4.利用柯西不等式
????a2b2c??,,例6:若a,b,c?0且a?b?c?33,求min?max???.
??a?2b?3cb?2c?3ac?2a?3b??????a2b2c2解:设t?max?,,?,
a?2b?3cb?2c?3ac?2a?3b??a2b2c2则t?,t?,t?,由柯西不等式得
a?2b?3cb?2c?3ac?2a?3b?a?b?c??a?b?c?3?t?3a2b2c23t????,
a?2b?3cb?2c?3ac?2a?3b6?a?b?c?626????a2b2c23??,,?当且仅当a?b?c?3取等,即min?max?. ????a?2b?3cb?2c?3ac?2a?3b????65.分类讨论
例7:若a,b?0,求min?max?a,b,2????14?????的值. ab??解:设t?max?a,b,①当a?b时,t???1414???,则t?a,t?b,t??,
abab?141455????,2t?a??25,当且仅当a?b?5时取等; abaaaa141455②当b?a时,t?????,2t?b??25,当且仅当a?b?5时取等.
abbbbb综上,t?5,当且仅当a?b?5时取等,即min?max?a,b,????14??????5. ab??6.待定系数法
例8:若a,b?0,求min?max?a,b,????14?????的值. ab??
解:设t?max?a,b,??1414???,则t?a,t?b??t??a,?t??b,且t??,
abab???t??t??t???a??b????t2?14?4?a?b?????4??????4??24?? ba?ab???4??24??4?a?b?,当且仅当a?b?t且时取等, ba???2即??4?,a?b?5时,t?5?t?5,即min?max?a,b,????14??????5. ab??7.构造函数
32例9:设a,b,c?R,f?x??x?ax?bx?c(?1?x?1),求minmaxf?x?.
??解:注意到f?x?为3次函数且x???1,1?,联想到三倍角公式cos3??4cos??3cos?,
33x,x???1,1?,若设x?cos?,?????,??, 41113则f?x???4cos??3cos???cos3?,从而maxf?x??,
44411当且仅当3??0,??,?2?,?3?,即x??1或x??时取等,故猜测minmaxf?x??.
24因此先构造特殊函数f?x??x?3????设t?maxf?x?,注意到f?1??f??1??2f???2f?????1??2??1??2?3(可用待定系数法求得), 2?1??2??1??2?3, 2故6t?f?1??f??1??2f???2f????f?1??f??1??2f???2f????即t??1??2??1??2?13113,考虑到f?x??x?x,x???1,1?时,t?,故minmaxf?x??. 4444??8.利用韦达定理
例10:若a,b,c?0且a?b?c?12,ab?bc?ca?45,求minmax?a,b,c?.
解:注意到a,b,c的对称性,故可设a?max?a,b,c?,又b?c?12?a,bc?45?a?12?a?, 所以方程x??a?12?x?45?a?12?a??0有两个不大于a的实根,故
2???f?a??0??12?a?a?5?a?6,当a?b?5,c?2时,min?max?a,b,c???5. ?2???0??9.数形结合
2例11:(2014浙江竞赛)若a?0,b?R且maxmin2x?4,ax?b,5?3x?????2,求a?b.
解:我们在同一坐标系中画出f1?x??2x?4,f2?x??ax2?b,f3?x??5?3x的图象, 则由图可知当且仅当f2?x?过???1,2?,??1,2?时, 才有maxmin2x?4,ax?b,5?3x所以a?b?2.
??2???2,
【同步训练】
1、(2013浙江预赛)设a,b?0,求min?max?a,b,????11???2??. 2ab??【详细解析】
2、(2006浙江预赛)若a,b,c?0,求max?min?,???11123??,,a?b?c??. 23?abc??【详细解析】 设t?min?,111?11123?t?t?t?,则,,, ,,a?b?c?2323abcabc??1113?a?,b2?,c3?,故t?a?b2?c3??t?3,
tttt当且仅当a?b?c?233??11123??时,t?3,即max?min?,2,3,a?b?c???3.
3?abc???
3、(2003北京竞赛)若x,y?0,求max?min?x,???11??,y???的值.
x???y【详细解析】
24、(2015浙江高考)设f?x??x?ax?b,f?x?在??1,1?上的最大值为??a,b?,
求证:当a?2时,??a,b??2. 【详细解析】
2??a,b??f?1??f??1??1?a?b?1?a?b??1?a?b???1?a?b??2a?4,
所以??a,b??2.
5、设f?x??x2??a?4?x?3?a,若对任意的a??0,4?,存在x0??0,2?使得
f?x0??t,求t的最大值.
【详细解析】
由题意minmaxf?x?即为t的最大值.
??f?x???x?1???a?2??x?1???x?1???a?2??x?1??1?a?2,
等号当且仅当x?0或x?2时成立,又1?a?222??min?1,所以t?1,t的最大值为1.
6、若a,b,c?0,求min?max???1a???1?b,?bc,?c??的值.
ab???ac【详细解析】 设t?max?11a1a??1?b,t??bc,t??c, ?b,?bc,?c?,则t?acabab??ac1a?1??a?2t???b????c??44?b??c?4?t?2,
acb?ac??b?当且仅当
1a?1a???1?b??c时取等,即a?b?c?1时,min?max??b,?bc,?c???2. acbab???ac?
???1a2?b2???7、若a,b?0,求min?max?,??.
b????a??【详细解析】
?1a2?b2?1a2?b21a2?b22ab2?t????2, 设t?max?,?,则t?,t?abababb??a??1a2?b2??2??即t?2,当且仅当a?b?时取等,即min?max?,???2.
ab2????????2??25????8、若x?y?0,求min?max?x,??.
yx?y??????????【详细解析】
??2??1????29、若x,y,z?0,求min?max?x?y,xy?z,??.
322xyz????????【详细解析】
?1??2?2设t?max?x?y,xy?z,?,则有
322xyz???????t?x2?y2?2xy?t?2xy??1??26t?xy?z?2xyz?t?4xyz?t?2xy?4xyz??8?t?2, ??22xyz??11?t??t3?22322xyz???xyz?当且仅当x?y且xy?z,2xy?2,即x?y?42,z?2时,t取得最小值2. 210、设a,b?R,求minmax1?a?2b,1?a?2b,2?b【详细解析】
????的值.