第三章 资金时间价值练习及答案

2025-04-26

资金时间价值练习

1.某人现要出国,出国期限为10年。在出国期间,其每年年末需支付1万元的房屋物业管理等费用,已知银行利率为2%,求现在需要向银行存入多少? 2.每三期期初存入1万元,年利率为10%,终值为多少?现值为多少? 3.某公司想使用一办公楼,现有两种方案可供选择。

方案一、永久租用办公楼一栋,每年年初支付租金10万,一直到无穷。 方案二、一次性购买,支付120万元。

目前存款利率为10%,问从年金角度考虑,哪一种方案更优? 4.某公司拟购置一处房产,房主提出三种付款方案:

(1)从现在起,每年年初支付20万,连续支付10次,共200万元; (2)从第5年开始,每年末支付25万元,连续支付10次,共250万元; (3)从第5年开始,每年初支付24万元,连续支付10次,共240万元。 假设该公司的资金成本率(即最低报酬率)为10%,你认为该公司应选择哪个方案? 5.某项永久性奖学金,每年计划颁发50000元奖金。若年复利率为8%,该奖学金的本金应为( )元。

6.某人准备第一年存1万,第二年存3万,第三年至第5年存4万,存款利率5%,问5年存款的现值合计(每期存款于每年年末存入),存款利率为10%。 (混合现金流:各年收付不相等的现金流量。)

7.有甲、乙两台设备可供选用,甲设备的年使用费比乙设备低500元,但价格高于乙设备2000元。若资本成本为10%,甲设备的使用期应长于( )年,选用甲设备才是有利的。

8.现在向银行存入20000元,问年利率i为多少时,才能保证在以后9年中每年得到4000元本利。

9.某人现在欲存一笔钱,以便在以后的20年中每年年底得到3000元,设银行存款利率为10%。

10.时代公司需用一设备,买价为1600元可用10年。如果租用,则每年年初需付租金200元,除此以外,买与租的其他情况相同。假设利率为6%。 要求计算说明购买与租用何者为优。

11.小李将每年领到的60元独生子女费逐年末存入银行,年利率5%,当独生子女14岁时,按复利计算,其本利和为多少?

12.某大学生在大学四年学习期间,每年年初从银行借款4000元用以支付学费,若按年利率6%计复利,第四年末一次归还全部本息需要多少钱?

13.某厂欲积累一笔设备更新基金,金额为50万元,用于4年后更新设备,如果银行利率为5%,问每年年末至少要存款多少?

14.如果某工程1年建成并投产,服务期5年,每年净收益为5万元,投资收益率为10%时,恰好能够在寿命期内把期初投资全部收回,问该工程期初所投入的资金是多少?

答案

1.某人现要出国,出国期限为10年。在出国期间,其每年年末需支付1万元的房屋物业管理等费用,已知银行利率为2%,求现在需要向银行存入多少?

答案:P=A×(P/A,I,N)=1×(P/A,2%,10)=8.9826

2.每三期期初存入1万元,年利率为10%,终值为多少?现值为多少?

方法一、在0时点之前虚设一期,假设其起点为0′,于是可以将这一系列收付款项看成是0′~2之间的普通年金,将年金折现到第二年年末,然后再将第二年末的终值折到第三年年末。

F=A×(F/A,I,N)×(1+I) =1×(F/A,10%,3)×(1+10%) =1×3.31×1.1 =3.641

方法二、在第三年末虚设一期存款,使其满足普通年金的概念,然后将这期存款扣除。

F=A×[(F/A,I,N+1)]-A = A×[(F/A,I,N+1)-1] = 1×[(F/A,10%,3+1)-1] =1×(4.6410-1) =3.641

先付年金现值的计算 上例:

方法1:看出是一个期数为3的普通年金,然后乘以(1+I)。 P=A×(P/A,I,N)×(1+I) =1×(P/A,10%,3)×(1+10%) =2.4869×1.1=2.7591

方法2:首先将第一期支付扣除,看成是2期的普通年金,然后再加上第一期支付。 P=A×(P/A,I,N-1)+A =A×[(P/A,I,N-1)+1] =A×[(P/A,10%,2)+1] =1×(1.7591+1) =2.7591

3.某公司想使用一办公楼,现有两种方案可供选择。

方案一、永久租用办公楼一栋,每年年初支付租金10万,一直到无穷。 方案二、一次性购买,支付120万元。

目前存款利率为10%,问从年金角度考虑,哪一种方案更优? 解: 方案一 P=10×(1+10%)÷10%=110 方案二 P=120

所以方案一更优。

4.某公司拟购置一处房产,房主提出三种付款方案:

(1)从现在起,每年年初支付20万,连续支付10次,共200万元; (2)从第5年开始,每年末支付25万元,连续支付10次,共250万元; (3)从第5年开始,每年初支付24万元,连续支付10次,共240万元。 假设该公司的资金成本率(即最低报酬率)为10%,你认为该公司应选择哪个方案?

方案(1)

P0=20×(P/A,10%,9) ×(1+10%) 或=20+20×(P/A,10%,9) =20+20×5.759 =135.18(万元)

方案(2)

P4=25×(P/A,10%,10) =25×6.145

=153.63(万元) P0=153..63×(P/F,10%,4) =153.63×0.683 =104.93(万元)

方案(3)

P3=24×[(P/A,10%,13)- (P/A,10%,3)] =24×(7.103-2.487)

=87.792 =110.78

该公司应该选择第二方案。

5.某项永久性奖学金,每年计划颁发50000元奖金。若年复利率为8%,该奖学金的本金应为( )元。

本金=50000/8%=625000

6.某人准备第一年存1万,第二年存3万,第三年至第5年存4万,存款利率5%,问5年存款的现值合计(每期存款于每年年末存入),存款利率为10%。 (混合现金流:各年收付不相等的现金流量。)

P=1×(P/F,10%,1)+ 3×(P/F,10%,2)+4×[(P/A,10%,5)- (P/A,10%,2)] =1×0.909+3×0.826+4×(3.791-1.736) =0.909+2.478+8.22 =11.607

7.有甲、乙两台设备可供选用,甲设备的年使用费比乙设备低500元,但价格高于乙设备2000元。若资本成本为10%,甲设备的使用期应长于( )年,选用甲设备才是有利的。

答案:2000=500×(P/A,10%,N) (P/A,10%,N)=4 期数 年金现值系数 6 4.3553 N 4 5 3.7908 年金现值系数 (内插法应用的原理图)

(N-5)/(6-5)=(4-3.7908)/(4.3553-3.7908) N=5.4

8.现在向银行存入20000元,问年利率i为多少时,才能保证在以后9年中每年得到4000元本利。

答案:20000=4000×(P/A,i,9) (P/A,i,9)=5 利率 系数 12% 5.3282 i 5 14% 4.9164 (i-12%)/(14%-12%)=(5-5.3282)/(4.9164-5.3282) i=13.59%

9.某人现在欲存一笔钱,以便在以后的20年中每年年底得到3000元,设银行存款利率为10%。

要求计算此人目前应存入多少钱。?解:P=A(P/A,10%,20) =3000*8.514 =25542(元)

10.时代公司需用一设备,买价为1600元可用10年。如果租用,则每年年初需付租金200元,除此以外,买与租的其他情况相同。假设利率为6%。 要求计算说明购买与租用何者为优。 解:计算出10年租金的现值。 P=200+200(A/P,6%,9)

=200+200*6.802 =1560.4(元)

10年的租金现值低于买价1600,租赁为优。

11.小李将每年领到的60元独生子女费逐年末存入银行,年利率5%,当独生子女14岁时,按复利计算,其本利和为多少?

解:F =A(F/A,i,n)=60′(F/A,5%,14) =60 ′19.599=1175.94(元)

12.某大学生在大学四年学习期间,每年年初从银行借款4000元用以支付学费,若按年利率6%计复利,第四年末一次归还全部本息需要多少钱? 解:F=A(F/A,6%,4)–(F/P,6%,1) =4000 ′4.375 ′1.060=18550(元)

13.某厂欲积累一笔设备更新基金,金额为50万元,用于4年后更新设备,如果银行利率为5%,问每年年末至少要存款多少? 解:A=F(A/F,i,n)=F(A/F,5%,4) =50 ?0.23201 =11.6005(万元)

所以,每年年末至少要存款11.6005万元。

14.如果某工程1年建成并投产,服务期5年,每年净收益为5万元,投资收益率为10%时,恰好能够在寿命期内把期初投资全部收回,问该工程期初所投入的资金是多少? 解:P=A(P/A,10%,5) =5 ?3.791

=18.955(万元)

所以,该工程期初投资18.955万元。

15.某投资项目贷款200万元,贷款利率为10%,贷款期限5年,若在贷款期内每年年末等额偿还贷款,问每年年末应还款多少恰好在5年内还清全部贷款? 解:A=P(A/P,10%,5) =200 ?0.26380 =52.76(万元)

所以,每年年末应还款52.76万元。

16.某企业拟购买一台设备,其年收益额第一年为10万元,此后直至第八年末逐年递减3000元,设年利率为15%,按复利计息,试求该设备8年的收益现值及等额支付序列收益年金。

A?100000?G(A/G,15%,8)?100000?3000?2.78?100000?8340?91660(元)P?A(P/A,15%,8)?91660?4.487?411278.42(元)

17.某企业在2002年有金额1000万元,若年利率为8%,利用复利进行计算。

(1)七年前有计划将款存入银行,每年等额存入多少到2002年方有1000万元? (2)到2012年该1000万元的本利和是多少? (3)在2006年的资金额是多少?

(4)若从2007年开始每年等额提取多少资金恰好在2012年将1000万元提取完毕? 解:

? A1=F(A/F,8%,7)=1000 ?0.11207=112.07(万元) ? F2012=P(F/P,8%,10)=1000 ?2.159=2159(万元) ? F2006=P(F/P,8%,4)=1000 ?1.360=1360(万元) ? A2=P(A/P,8%,6)=1360 ?0.21632=294.20(万元) A2=F(A/F,8%,6)=2159 ?0.13632=294.32(万元)

18.某企业购买一套设备,投入资金5万元,设备寿命10年,无残值,欲在10年后该设备在使用中所取得的总收益为10万元,问投资收益率应达到多少? 解:F=P(F/P,i,n) 即,10=5(F/P,i,10) (F/P,i,10)=2 查表得: i=7% (F/P,7%,10)=1.967 i=? (F/P,i,10)=2 i=8% (F/P,8%,10)=2.159 用内插法得:a:b=c:d

19. 某项目投资借款8万元,在4年内按年利率10%还清全部贷款的本金和利息,试计算下列四种还款方式的还款金额。

(1)每年年末偿还2万元本金和所欠利息;

(2)每年年末只偿还所欠利息,第4年年末一次还清本金; (3)每年年末偿还等额偿还本金和利息; (4)贷款期满时一次偿还本金和利息。

方案 方式 计算P/n + n

P(A/P,i,n) P?i P(1+i)公式[P-(t-1)P/n ]i

第1年末

第2年末

第 3年末 第 4年末

20.甲银行的复利率为8%,每季复利一次。 ?要求(1)计算甲银行的实际年利率。

? (2)乙银行每月复利率一次,若要与甲银行的实际年利率相等,则期复利率应为多少? ?解:(1)由有关计算公式可知,甲银行实际年利率为:

(1) 方式(2) 方式(3) 方式(4) 28000 26000 24000 22000

8000 8000 8000

25237.6 25237.6 25237.6

0 0 0

88000 25237.6 117120 ?i = [1+(0.08/4)]4 -1=8.24%

?(2)设乙银行复利率为r ,则由有关公司得:

?[1+(r/12)]12 -1= 8.24%

?解得:r=7.94%

21.某项目有两个贷款方案:第一方案年利率16%,每年计息一次;第二方案年利率15%,每月计息一次。应选择哪个贷款方案为优? 解:方案1的实际利率i1 = 16%

方案2的实际利率i2 =(1+15%/12)12 - 1 = 16.08%

i1?i2,选用贷款方案1归还的本利和小于方案2,因此,应选方案1为优。

某企业有 A、B两个投资项目,计划投资额均为1000万元,其收益(净现值)的概率分布如下表:

金额单位:万元 市场状况 概率 A项目净现值 B项目净现值 好 0.2 200 300 一般 0.6 100 100 差 0.2 50 -50 要求: (l)分别计算A、B两个项目净现值的期望值。 (2)分别计算A、B两个项目期望值的标准差。 (3)判断A、B两个投资项目的优劣。

答案:

(l)计算两个项目净现值的期望值 A项目:200×0.2+100×0.6+50×0.2=l10(万元) B项目:300×0.2+100×0.6+(-50)×0.2=110(万元) (2)计算两个项目期望值的标准离差 A项目:

=48.99

B项目:

=111.36

(3)判断 A、B两个投资项目的优劣

由于 A、B两个项目投资额相同,期望收益(净现值)亦相同,而 A项目风险相对较小(其标准离差小于B项目),故A项目优于B项目


第三章 资金时间价值练习及答案.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:物理知识点高考物理大一轮复习第4章曲线运动万有引力与航天配套

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219