5
图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面-层有一个圆圈,以下各层均比上-层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个
数为1+2+3+…+n= .
如果图1中的圆圈共有12层,
(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;
(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,…,求图4中所有圆圈中各数的绝对值之和.
解析:(1)图3中依次排列为1,2,4,7,11……,如果用后项减前项依次得到1,2,3,4,5……,正好是等差数列,再展开原数列可以看出第一位是1,从第二位开始后项减前项得到等差数列,分解一下:1,1+1,1+1+2,1+1+2+3,1+1+2+3+4……,从分解看,第n个圆圈的个数应为1+(1+2+3+4+……n),而1+2+3+4+……+n正好是连续自然数和的公式推导,上面已给出了公式: 1+2+3+…+n=
,则第n项公式为1+
,已知共
有12层,那么求图3最左边最底层这个圆圈中的数应是12层的第一个数,那么1+11(11+1)/2=67.
解析:(2)已知图中的圆圈共有12层,按图4的方式填上-23,,-22,-21,……,求图4中所有圆圈中各数的绝对值之和?
第一层到第十二层共有多少个圆圈呢,运用等差数列求和公式得:(1+12)12/2=78个,那78个圆圈中有多少个负数,多少个正数呢,从已知条件可以看出,第一个数是-23,到-1有23个负数,1个0,78-24=54个正数, 1至54,所以分段求和,两段相加得到图4中所有圆圈的和。第一段:S=
首项?末项?项数=(|-23|+|-1|)*23/2=276,第二段=(1+54)
2*54/2=1485,相加后得1761。
例如、观察下列数表:
6
解析:根据数列所反映的规律,第行第列交叉点上的数应为______ .这一题,看上去内容比较多,实际很简单。题目条件里的数构成一个正方形。让我们求的是左上角至右下角对角线上第n个数是多少。我们把对角线上的数抽出来,就是1,3,5,7,……。这是奇数从小到大的排列。于是,问题便转化成求第n个奇数的表达式。即2n-1。
还有, “图中的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤……,则第n个等腰直角三角形的斜边长为_____________。”也可以按照这个思想求解。
二、 要抓题目里的变量
找数学规律的题目,都会涉及到一个或者几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。所以,抓住了变量,就等于抓住了解决问题的关键。
例如,用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 块,第个图形中需要黑色瓷砖 块(用含的代数式表示).
这一题的关键是求第个图形中需要几块黑色瓷砖?
7
解析:在这三个图形中,前边4块黑瓷砖不变,变化的是后面的黑瓷砖。它们的数量分别是,第一个图形中多出0×3块黑瓷砖,第二个图形中多出1×3块黑瓷砖,第三个图形中多出2×3块黑瓷砖,依次类推,第n个图形中多出(n-1)×3块黑瓷砖。所以,第n个图形中一共有4+(n-1)×3块黑瓷砖。
有类似的题目:“观察图(l)至(4)中小圆圈的摆放规律,并按这样的规律继续
摆放,记第n个图中小圆圈的个数为m,则,m=
(用含 n 的代数式表示).”
三、 要善于比较
“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是
。”
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有
关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。 序列号: 1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n-1,第100项是100-1。
如果题目比较复杂,或者包含的变量比较多。解题的时候,不但考虑已知数的序列号,还要考虑其他因素。
譬如,已知下列等式:
2
2
① 13=12; ② 13+23=32; ③ 13+23+33=62;
8