数列高考大题专题(理科)
(2012江苏)已知各项均为正数的两个数列{an}和{bn}满足:
an?1?an?bnan2?bn2,n?N?.
2???bbn?n???1.设bn?1?1?,n?N,求证:数列????是等差数列;
aan???n???2.设bn?1?2?解:
(1)
bn,n?N?,且{an}是等比数列,求a1和b1的值. an?bn1???bn?1??bn??an??∵?????an?1??an??an?bn??a2?b2n?n(2)
22?2??a2?b2??bn??n??n????an??an????2??b?2???n??1?n?N*? ??an??2∵an?0,bn?0
?a?b?∴nn2∴1?an?1?2?an2?bn2??an?bn?
an?bnan?bn222?2
∵{an}是各项都为正数的等比数列 ∴设其公比为q,则q?0 ①当q?1时, ∵an?0
∴数列?an?是单调递增的数列,必定存在一个自然数,使得an?1?2 ②当0?q?1时 ∵an?0
∴数列?an?是单调递减的数列,必定存在一个自然数,使得an?1?1
由①②得:q?1 ∴an?a1?n?N*? ∵1?an?1?an?bnan?bna1?bna?bn21222?2
得:a1?,且1?a1?2 a1?a122?a12∴bn? 2a1?1∵bn?1?2?bn2?bn,n?N* ana1∴数列?bn?是公比为∵1?a1?2 ∴2的等比数列 a12?1 a12?1时 a1① 当a1?a122?a12数列?bn?是单调递增的数列,这与bn?矛盾
a12?1② 当
2?1时 a1数列?bn?是常数数列,符合题意 ∴a1?2 ∴bn?2 ∴b1?2
(2010江苏)19.(本小题满分16分)
设各项均为正数的数列?an?的前n项和为Sn,已知2a2?a1?a3,数列为d的等差数列.
(1)求数列?an?的通项公式(用n,d表示)
?S?是公差
n(2)设c为实数,对满足m?n?3k且m?n的任意正整数m,n,k,不等式
9Sm?Sn?cSk都成立,求证:c 的最大值为.
2
(2011高考)(本小题满分12分)
等比数列?an?的各项均为正数,且2a1?3a2?1,a32?9a2a6. 1.求数列?an?的通项公式.
?1?2.设 bn?log3a1?log3a2?......?log3an,求数列??的前项和.
?bn?解:
232(Ⅰ)设数列{an}的公比为q,由a3所以q2??9a2a6得a3?9a41。有条件91可知a>0,故q?。
311由2a1?3a2?1得2a1?3a2q?1,所以a1?。故数列{an}的通项式为an=n。
33(Ⅱ )bn?log1a1?log1a1?...?log1a1
??(1?2?...?n)??n(n?1)2
故
1211????2(?) bnn(n?1)nn?1111111112n??...???2((1?)?(?)?...?(?))?? b1b2bn223nn?1n?12n1所以数列{}的前n项和为?
n?1bn(辽宁理17)
已知等差数列{an}满足a2=0,a6+a8=-10 (I)求数列{an}的通项公式;
?an??n?1?(II)求数列?2?的前n项和.
解:(I)设等差数列{an}的公差为d,由已知条件可得
?a1?d?0,??2a1?12d??10,
??a1?1,解得?d??1.
故数列{an}的通项公式为an?2?n. ………………5分 {an2n?1}的前n项和为Sa2n,即
Sn?a1?2??an2n?1,故S1?1,
Sn2?a1a22?4??an2n.
所以,当n?1时,
Sn?a?a2?a1a?an?1a12??n2n?1?n22n?1?(1112?n2?4??2n?1?2n)?1?(1?12?n2n?1)?2n
n 2n.
n所以
Sn?2n?1.
an综上,数列{2n?1}的前n项和Snn?2n?1. ………………12分
(天津理20)
已知数列{aa0,b3?(?1)nn}与{bn}满足:
bnn?an?1?bn?1an?2?n?2,a1?2,a2?4.
(Ⅰ)求a3,a4,a5的值;
(Ⅱ)设cn?a2n?1?a*2n?1,n?N,证明:?cn?是等比数列;
II)设数列
n?N*,且
( 3?(?1)nbn?,n?N*,2(I)解:由
?1,n为奇数bn???2,n为偶数 可得
又bnan?an?1?bn?1an?2?0,
当n=1时,a1+a2+2a3=0,由a1=2,a2=4,可得a3??3;当n=2时,2a2+a3+a4=0,可得a4??5;当n=3时,a3+a4+2a5=0,可得a4?4.*n?N, (II)证明:对任意
a2n?1?a2n?2a2n?1?0, ① 2a2n?a2n?1?a2n?2?0, ② a2n?1?a2n?2?2a2n?3?0, ③ ②—③,得 a2n?a2n?3. ④
将④代入①,可得a2n?1?a2n?3??(a2n?1?a2n?1)
*c??c(n?N) n即n?1又c1?a1?a3??1,故cn?0,
cn?1??1,所以{cn}因此cn是等比数列.
3.(17)(本小题满分12分) 设数列?an?满足a1?2,an?1?an?322n?1 (1) 求数列?an?的通项公式; (2) 令bn?nan,求数列的前n项和Sn (17)解:
(Ⅰ)由已知,当n≥1时,
an?1?[(an?1?an)?(an?an?1)??(a2?a1)]?a1

