2024年全国高考理科数学试题及答案-全国卷1

2025-07-26

. .. 绝密★启用前

2017年普通高等学校招生全国统一考试

理科数学

本试卷5页,23小题,满分150分。考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将

试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;

如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应

位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按

以上要求作答无效。

4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则

A .{|0}A

B x x =

C .{|1}A B x x =>U

D .A B =?I

2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方

形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是

A .14

B .π

8 C .12 D .π

4

3.设有下面四个命题

1p :若复数z 满足1z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;

3p :若复数12,z z 满足12z z ∈R ,则12z z =;

4p :若复数z ∈R ,则z ∈R . 其中的真命题为

A .13,p p

B .14,p p

C .23,p p

D .24,p p

4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为

A .1

B .2

C .4

D .8

5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范

. ..

围是

A .[2,2]-

B .[1,1]-

C .[0,4]

D .[1,3] 6.621(1)(1)

x x

++展开式中2x 的系数为 A .15

B .20

C .30

D .35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长

为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为

A .10

B .12

C .14

D .16 8.右面程序框图是为了求出满足3n ?2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入

A .A >1 000和n =n +1

B .A >1 000和n =n +2

C .A ≤1 000和n =n +1

D .A ≤1 000和n =n +2

9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3

),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移

π6

个单位长度,得到曲线C 2 B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移

π12个单位长度,得到曲线C 2

C .把C 1上各点的横坐标缩短到原来的

12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2

D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12

个单位长度,

. ..

得到曲线C 2

10.已知F 为抛物线C :y 2

=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,

直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为

A .16

B .14

C .12

D .10 11.设xyz 为正数,且235x y z ==,则

A .2x <3y <5z

B .5z <2x <3y

C .3y <5z <2x

D .3y <2x <5z

12.几位大学生响应国家的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,他们推出了“解

数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21

,再接下来的三项是20,21,22,依此类推。求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂。那么该款软件的激活码是

A .440

B .330

C .220

D .110 二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= .

14.设x ,y 满足约束条件21210x y x y x y +≤??+≥-??-≤?

,则32z x y =-的最小值为 .

15.已知双曲线C :22

221x y a b

-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。若∠MAN =60°,则C 的离心率为________。

16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。D 、E 、F 为圆O

上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形。沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥。当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3

)的最大值为_______。

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考

生都必须作答。第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为2

3sin a A

(1)求sin B sin C ;

. .. (2)若6cos B cos C =1,a =3,求△ABC 的周长.

18.(12分)

如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .

(1)证明:平面PAB ⊥平面PAD ;

(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2

(,)N μσ.

(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;

(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95

经计算得16119.9716i i x x ===∑,1616222211

11()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =???.

用样本平均数x 作为μ的估计值?μ

,用样本标准差s 作为σ的估计值?σ,利用估计值判断是否需对当天的生产过程进行检查?剔除????(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,

160.997 40.959 2=0.0080.09≈.

20.(12分)

已知椭圆C :22

22=1x y a b

+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上.

(1)求C 的方程;

(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l

.

.. 过定点.

21.(12分)

已知函数)f x =

(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性;

(2)若()f x 有两个零点,求a 的取值范围.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

22.[选修4―4:坐标系与参数方程](10分)

在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=??=?

(θ为参数),直线l 的参数方程为 4,1,x a t t y t =+??=-?

(为参数). (1)若a =?1,求C 与l 的交点坐标;

(2)若C 上的点到l

a .

23.[选修4—5:不等式选讲](10分)

已知函数f (x )=–x 2

+ax +4,g (x )=│x +1│+│x –1│.

(1)当a =1时,求不等式f (x )≥g (x )的解集;

(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.

.

.. 2017年普通高等学校招生全国统一考试

理科数学参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

要求的。

1. A

2.B 3.B 4.C 5.D 6.C 7.B 8.D 9.D 10.A 11.D 12.A

二、填空题:本题共4小题,每小题5分,共20分。

13

. 14.-5 15

16

3

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考

生都必须作答。第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为2

3sin a A

(1)求sin B sin C ;

(2)若6cos B cos C =1,a =3,求△ABC 的周长.

解:(1) 由题意可得21sin 23sin ABC a S bc A A

2024年全国高考理科数学试题及答案-全国卷1.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219