班级 姓名 学号
高
第一章 函数与极限
??|sinx|,|x|??1. 设 ?(x)??3, 求?????、??????、??????
??0,|x|????6??4??4?、?(2).?3
?(?6)?sin?6?12
?(?4)?sin?4?22
?(???sin(??24)4)?2
??2??02. 设f?x?的定义域为?0,1?,问:⑴f?x2?; ⑵f?sinx?;
⑶f?x?a??a?0?; ⑷f?x?a??f?x?a? ?a?0?的定义域是什么?(1)0?x2?1知-1?x?1,所以f(x2)的定义域为?-1,1?;
(2)由0?sinx?1知2k??x?(2k?1)?(k?Z),所以f(sinx)的定义域为?2k?,(2k?1)??
(3)由0?x?a?1知-a?x?1?a所以f(x?a)的定义域为?-a,1?a?
1
班级 姓名 学号
?0?x?a?1?-a?x?1?a(4)由?知?从而得0?x?a?1a?x?1?a??当0?a?当a?1212时,定义域为?a,1?a?
时,定义域为?x?1x?1,g?x??ex?1x3. 设
?1?f?x???0??1?,求f?g?x??和g?f?x??,并做出这两个
函数的图形。
?1,g(x)?1?1,x?0??1.)f[g(x)]??0,g(x)?1从而得f[g(x)]??0,x?0???1,x?0?1,g(x)?1???e,x?1????1,x?1??1??e,x?1n??n??
2.)g[f(x)]?ef(x) 4. 设数列?xn?有界, 又limyn?0, 证明: limxnyn?0.
??xn?有界,??M?0,对?n,有xn?M又?limyn?0,即???0,?N(自然数),当n?N时,有yn?n???M
从而xnyn?0?xn.yn?M.?M?? ?结论成立。5. 根据函数的定义证明: ⑴ lim?3x?1??8
x?3???0,要使3x?1?8?3x?3??,只要x?3?故???0,取?=x?3?3即可。?3,当0?x?3??时,恒有3x?1?8??成立
所以lim(3x?1)?8 2
班级 姓名 学号
(2) limsinxxx????0
???0,要使sinxx?sinxxx??,只要x?1?2即可。故取sinxxX?1?2,
当x?X时,恒有?0??成立,所以limx?3?06. 根据定义证明: 当x?0时,函数y?时,才能使y?104?
?M?0,要使1?2xx?2?1x?1x1?2xx是无穷大.问x应满足什么条件
?2?M,只要x?1?2xx1M?2即可。故取?=所以lim?M?21?2xx4,当0?x??时,有??1104?M成立
x?0要使y?10,只要x??2即可。7. 求极限: ⑴ limx?3x?3x?122=0
?x2⑵ lim?x?h?2hh?0=limh(2x?h)hh?0?2x
⑶ limx?xx?3x?1422x??=0
n(n?1)(4) lim(5)
1?2????n?1?n2n??=limn??22n2?12
1?x?x?33??1lim??1 =lim???3x?1(1?x)(1?x?x2)x?11?x1?x??3
班级 姓名 学号
32(6) limx?2xx?2?x?2?2=?
8. 计算下列极限: ⑴ limx2sin1x?0x=0 ⑵ limarctanxx??x=lim1x??x.arctanx?0
9. 计算下列极限: ⑴ limsin?xxlimsin?x.???x?0=x?0?x
⑵ limtan3xx?0x=limsin3xx?0x.1cos3x?3
?cos2x2⑶ lim1xx?0xsinx=lim2sinx?0x.sinx?2
3x?6(4)lim??1?2?= ?e?6
x???x??lim?2?x2?x?0?(1??x)??11(5)lim?1?2x?x=lim(1?2x)2x.2x?0?e2
x?0?3?x21?x(6)lim2.(?2)?1?e?2
x???x?=lim(1?)?1?x??x??1?x10. 利用极限存在准则证明: ⑴ lim?11n??n??1?n2??n2?2?????n2?n???1 ??n2n?n??n??1?11?n22?n2??n2?2????n2?n??? ?n2??22又limnn??n2?n??1,limnn??n2???1
故原式=1
4
班级 姓名 学号
⑵ 数列2,2?2,2?2?2,??的极限存在,并求其极限.
xn?2?xn?1,n?2,3,...解:10.先证单调。x2?2?x1?2?2?2?x1,假设xk?xk?1,则xk?1?2?xk?2?xk?1?xk故?xn?单调递增。20.再证有界。x1?2?2,假设xk?1?2,则xk?2?xk?1?2?2?2故?xn?有界。所以limn??xn?,设limn??xn?a,由xn?2?xn?1知a?2?a所以a?2,a??1(舍去)?limn??xn?2当x?0时, 2x?x2与x2?x3相比, 哪一个是较高阶的无穷小? 232?limx?x)x?02x?x2?limx(1?xx?0x(2?x)?0
?当x?0时,x2?x3是较高阶的无穷小。当x?1时, 无穷小1?x和
122?1?x?是否同阶?是否等价?
1
(1-x2)?lim2(1?x)(1x?11?x?lim?x)x?12(1?x)?1?当x?1时,122(1-x)?1-x所以同阶且等价.
证明: 当x?0时, 有secx?1~x22.
5
11. 12. 13.