气体动理论(3)

2025-08-03

8. 容器中储有1 mol 的氮气,压强为1.33 Pa,温度为 7 ℃,则 (1) 1 m3中氮气的分子数为___________________; (2) 容器中的氮气的密度为____________________;

(3) 1 m3中氮分子的总平动动能为_________________.

9. 体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一温度T下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百分比为_________.

10. 容积为10 l的盒子以速率v = 200m?s-1匀速运动,容器中充有质量为50g,温度为18?C的氢气,设盒子突然停止,全部定向运动的动能都变为气体分子热运动的动能,容器与外界没有热量交换,则达到热平衡后,氢气的温度增加了 K;氢气的压强增加了 Pa.(摩尔气体常量R?8.31J?mol?1?K?1,氢气分子可视为刚性分子)

11. 一能量为1012 eV的宇宙射线粒子,射入一氖管中,氖管内充有 0.1 mol的氖气,若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了_______________K. (1 eV=1.60×10?19J,摩尔气体常量R=8.31 J ? mol-1 ? K-1)

12. 一氧气瓶的容积为V,充入氧气的压强为p1,用了一段时间后压强降为p2,则瓶中剩下的氧气的内能与未用前氧气的内能之比为__________.

13. 如图10-2-13所示, 大气中有一绝热气缸,其中装有一定量的理想气体,然后用电炉徐徐供热,使活塞(无摩擦地)缓慢上升.在此过程中,以下物理量将

如何变化? (选用“变大”、“变小”、“不变”填空)

(1) 气体压强______________;

(2) 气体分子平均动能______________; (3) 气体内能______________.

14. 氧气和氦气(均视为理想气体)温度相同时, 它们的 相等. 15.若某种理想气体分子的方均根速率

I图10-2-13

v2?450m?s?1,气体压强为

p?7?104Pa,则该气体的密度为?= .

11

16. 理想气体在平衡状态下,速率区间v ~ v ? dv内的分子数为 . 17. f (v)是理想气体分子在平衡状态下的速率分布函数, 则式

?vv21f(v)dv的物理意

义是: .

18. 在与最概然速率相差1%的速率区间内的分子数占总分子数的百分比为 . 19. 如图10-2-19所示氢气分子和氧气分子在相同

温度下的麦克斯韦速率分布曲线.则氢气分子的最概然 速率为______________,氧分子的最概然速率为 O

f(v)a1000bv(m?s?1)图10-2-19

____________.

20. 当理想气体处于平衡态时,若气体分子速率分布函数为f (v),则分子速率处于最概然速率vp至∞范围内的概率

?N?___________________. N21. 已知f (v)为麦克斯韦速率分布函数,N为总分子数,则

(1) 速率v > 100 m ? s-1的分子数占总分子数的百分比的表达式为________________;

(2) 速率v > 100 m ? s-1的分子数的表达式为________________________. 22. 用总分子数N、气体分子速率v和速率分布函数f(v) 表示下列各量: (1) 速率大于v 0的分子数=____________________; (2) 速率大于v 0的那些分子的平均速率=_____________________;

(3) 多次观察某一分子的速率,发现其速率大于v 0的概率=___________________. 23. 如图10-2-23所示曲线为处于同一温度T时氦(相对 f(v)(a)

(b)原子量4)、氖(相对原子量20)和氩(相对原子量40)三种

(c) 气体分子的速率分布曲线.其中

曲线(a)是 气分子的速率分布曲线;

O

图10-2-23 曲线(c )是 气分子的速率分布曲线.

v24. 处于重力场中的某种气体,在高度z处单位体积内的分子数即分子数密度为n.若f (v)是分子的速率分布函数,则坐标介于x~x+dx、y~y+dy、z~z+dz区间内,速率介于v ~ v + dv区间内的分子数d N=____________________.

12

25. 由玻尔兹曼分布律可知,在温度为T的平衡态中,分布在某一状态区间的分子数d N与该区间粒子的能量?有关,其关系为d N ∝____________.

26. 已知大气压强随高度变化的规律为p?p0exp???Mgh?其中M为气体的摩尔?,

?RT?质量.拉萨海拔约为3600 m,设大气温度t =27℃,而且处处相同,则拉萨的气压p= .

27. 已知大气中分子数密度n随高度h的变化规律n=n0exp[-

Mgh],式中n0为RTh=0处的分子数密度.若大气中空气的摩尔质量为M,温度为T,且处处相同,并设重力场是均匀的,则空气分子数密度减少到地面的一半时的高度为 .

28. 在一个容积不变的容器中,储有一定量的理想气体,温度为T0时,气体分子的平均速率为v0,分子平均碰撞次数为Z0,平均自由程为?0.当气体温度升高为4T0时,气体分子的平均速率为v= ;平均碰撞次数z= ;平均自由程?= .

29. 氮气在标准状态下的分子平均碰撞频率为5.42×108 s-1,分子平均自由程为6×10-6 cm,若温度不变,气压降为 0.1 atm ,则分子的平均碰撞频率变为_______________;平均自由程变为_______________.

30. 一定量的理想气体,经等压过程从体积V 0膨胀到2V 0,则描述分子运动的下列各量与原来的量值之比是

(1) 平均自由程(2) 平均速率

?=______________; ?0v=______________; v0(3) 平均动能

?k=______________. ?k0?331. 已知空气的摩尔质量是m?2.9?10kg,则空气中气体分子的平均质量为 ;成年人作一次深呼吸,约吸入450cm的空气,其相应的质量为 ;吸入的气体分子数约为 个.

13

3三、计算题

1. 两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图10-3-1所示.当左边容器的温度为0℃,而右边容器的温度为20℃时,水银滴刚好在管的中央.试问,当左边容器温度由0℃增到5℃、而右边容器温度由20℃增到30℃时,水银滴是否会移动? 如何移动?

H2? 0C 图10-3-1

H220?C2. 一超声波源发射声波的功率为10 W.假设它工作10 s,并且全部波动能量都被1 1mol氧气吸收而用于增加其内能,问氧气的温度升高了多少? (氧气分子视为刚性分子,摩尔气体常量R = 8.31 J·mol

3. 质量m=6.2×10

?1?14

?1·K

?1)

g的微粒悬浮在27℃的液体中,观察到悬浮粒子的方均根速

?1?1率为1.4 cm·s.假设该粒子速率服从麦克斯韦速率分布,求阿伏加德罗常数.

(摩尔气体常量R = 8.31 J·mol

·K

4. 许多星球的温度达到108K.在这温度下原子已经不存在了,而氢核(质子)是存在的.若把氢核视为理想气体,求:

(1) 氢核的方均根速率是多少?

(2) 氢核的平均平动动能是多少电子伏特?

(1eV?1.6?10?19J,玻耳兹曼常量k?1.38?10?23J?K?1)

5. 黄绿光的波长是500nm (1nm=10 ?9 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子? (玻耳兹曼常量k=1.38×10??23J·K?1)

6. 一篮球充气后,其中有氮气8.5g,温度为17℃,在空中以65km?h的高速飞行.求:

(1) 一个氮分子(设为刚性分子)的热运动平均平动动能,平均转动动能和平均总动能; (2) 球内氮气的内能; (3) 球内氮气的轨道动能.

7. 一密封房间的体积为5×3×3 m3,室温为20℃,室内空气分子热运动的平均平动动能的总和是多少?如果气体的温度升高 1.0 K,而体积不变,则气体的内能变化多少?气体分子的方均根速率增加多少? 已知空气的密度?=1.29 kg·m-3,摩尔质量M=29×10?3 kg·mol-1,且空气分子可认为是刚性双原子分子.(摩尔气体常量R=8.31 J·mol?1·K?1)

8. 1 kg某种理想气体,分子平动动能总和是1.86×106 J,已知每个分子的质量是

?13.34?10?27kg,试求气体的温度.

14

9. 有 2×10?3 m3刚性双原子分子理想气体,其内能为6.75×102 J. (1) 试求气体的压强;

(2) 设分子总数为 5.4×1022个,求分子的平均平动动能及气体的温度.

10. 一氧气瓶的容积为V,充了气未使用时压强为p1,温度为T1;使用后瓶内氧气的质量减少为原来的一半,其压强降为p2,试求此时瓶内氧气的温度T2.及使用前后分子热运动平均速率之比

v1. v211. 容器内混有二氧化碳和氧气两种气体,混合气体的温度是290 K,内能是9.64×105 J,总质量5.4 kg,试分别求二氧化碳和氧气的质量.(二氧化碳的M=44×10?3 kg·mol?1,氧气的M=32×10?3 kg·mol?1 , 摩尔气体常量 R=8.31 J·mol?1·K?1)

12. 容器内有11 kg二氧化碳和2 kg氢气(两种气体均视为刚性分子的理想气体),已知混合气体的内能是8.1×106 J.求:

(1) 混合气体的温度; (2) 两种气体分子的平均动能.

(二氧化碳的M=44×10?? kg·mol?? ,玻耳兹曼常量k=1.38×10??? J·K??摩尔气体常量R=8.31 J·mol?1·K?? )

13. 容积V=1m3的容器内混有N1=1.0×1025个氧气分子和N2=4.0×1025个氮气分子,混合气体的压强是2.76×105 Pa,求:

(1) 分子的平均平动动能;

(2) 混合气体的温度.

14. 当氢气和氦气的压强、体积和温度都相等时,求它们的质量比

mH2mHe和内能比

EH2EHe.(将氢气视为刚性双原子分子气体)

15. 在300K时,空气中速率在(1)vP附近;(2)10vP附近,单位速率区间(?v?1m?s)

?110mol的空气中这区间的分子数又的分子数占分子总数的百分比各是多少? 平均来讲,

各是多少? 空气的摩尔质量按29g?mol计.

16. 设氢气的温度为300℃,求速率在1500~1510m?s?1之间的分子数?N1;速率在

?152170~2180m?s?1之间的分子数?N2;速率在3000~3010m?s?1之间的分子数?N3之比

?N1:?N2:?N3.

15

17. 氮分子的有效直径为3.8×10-10m.求它在标准状态下的平均自由程和连续两次碰撞间的平均时间间隔.

18. 今测得温度为t1?15?C,压强为p1?0.76mHg时,氩分子和氖分子的平均自由程分别为:?Ar?6.7?10?8m和?Ne?13.2?10?8m,求:

(1) 氖分子和氩分子有效直径之比dNe/dAr??

?? (2) 温度为t2?20?C,压强为p2?0.15mHg时,氩分子的平均自由程?Ar19. 真空管的线度为10?2m,其中真空度为1.33?10?3Pa,设空气分子的有效直径为3?10?10m,求27℃时单位体积内的空气分子数、平均自由程和平均碰撞频率.

20. 人体一天大约向周围环境散发8?106J 热量,试估算由此产生的熵.设人体温度为36?C,忽略人进食时带进体内的熵,环境温度取为237K.

21. 已知在0?C时,1mol的冰溶解为1mol的水需要吸收6000J的热量,求 (1) 在0?C时这些水化为冰的熵变;

(2) 在0?C时水的微观状态数与冰的微观状态数之比.

22. 我国某瀑布的落差是76 m,流量为900 m3?s-1. 当气温为27?C时,此瀑布每秒产生的熵是多少?

23. 已知一辆匀速行驶的汽车,消耗在各种摩擦上的功率约为20 kW. 当环境温度为27?C时,由此产生的熵的速率是多少?

16


气体动理论(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:公卫执业医师资格考试历年真题卫生统计学

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219